About the Project

%E2%9A%BD%F0%9F%93%8F%20Koupit%20Ivermectin%20od%20%242.85%20%F0%9F%95%B5%20www.hPills.online%20%F0%9F%95%B5%20-%20Levn%C3%A9%20Pilulky%20%F0%9F%93%8F%E2%9A%BDM%C5%AF%C5%BEete%20Si%20Koupit%20Ivermectin%20V%20Mexiku%2C%20Kr%C3%A1tce%20Datovan%C3%BD%20Ivermectin%201%20Na%20Prodej%2C%20Koupit%20Ivermectin%20Kanada

AdvancedHelp

(0.099 seconds)

21—30 of 853 matching pages

21: 1.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ί
x , y real variables.
𝐀 1 inverse of the square matrix 𝐀
det ( 𝐀 ) determinant of the square matrix 𝐀
tr ⁑ ( 𝐀 ) trace of the square matrix 𝐀
etr ⁑ ( 𝐀 ) exponential of tr ⁑ ( 𝐀 )
β–ΊIn the physics, applied maths, and engineering literature a common alternative to a ¯ is a , a being a complex number or a matrix; the Hermitian conjugate of 𝐀 is usually being denoted 𝐀 .
22: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
β–ΊFor large values of the parameters in the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols, different asymptotic forms are obtained depending on which parameters are large. … β–Ί
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ⁒ ( 4 Ο€ ⁒ ( 2 ⁒ j 1 + 1 ) ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ l 3 + 1 ) ⁒ sin ⁑ ΞΈ ) 1 2 ⁒ ( cos ⁑ ( ( l 3 + 1 2 ) ⁒ ΞΈ 1 4 ⁒ Ο€ ) + o ⁑ ( 1 ) ) , j 1 , j 2 , j 3 ≫ l 3 ≫ 1 ,
β–Ί
34.8.2 cos ⁑ θ = j 1 ⁒ ( j 1 + 1 ) + j 2 ⁒ ( j 2 + 1 ) j 3 ⁒ ( j 3 + 1 ) 2 ⁒ j 1 ⁒ ( j 1 + 1 ) ⁒ j 2 ⁒ ( j 2 + 1 ) ,
β–ΊFor approximations for the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
23: Bibliography
β–Ί
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • β–Ί
  • D. E. Amos (1983b) Algorithm 610. A portable FORTRAN subroutine for derivatives of the psi function. ACM Trans. Math. Software 9 (4), pp. 494–502.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in Ξ± -, Ξ² - and Ξ³ -Spectroscopy: 3 ⁒ j -, 6 ⁒ j -, 9 ⁒ j -Symbols, F- and Ξ“ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 24: 9.18 Tables
    β–Ί
  • Miller (1946) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) for x = 20 ⁒ ( .01 ) ⁒ 2 ; log 10 ⁑ Ai ⁑ ( x ) , Ai ⁑ ( x ) / Ai ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 25 ⁒ ( 1 ) ⁒ 75 ; Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 10 ⁒ ( .1 ) ⁒ 2.5 ; log 10 ⁑ Bi ⁑ ( x ) , Bi ⁑ ( x ) / Bi ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 10 ; M ⁑ ( x ) , N ⁑ ( x ) , ΞΈ ⁑ ( x ) , Ο• ⁑ ( x ) (respectively F ⁑ ( x ) , G ⁑ ( x ) , Ο‡ ⁑ ( x ) , ψ ⁑ ( x ) ) for x = 80 ⁒ ( 1 ) 30 ⁒ ( .1 ) ⁒ 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Yakovleva (1969) tabulates Fock’s functions U ⁑ ( x ) Ο€ ⁒ Bi ⁑ ( x ) , U ⁑ ( x ) = Ο€ ⁒ Bi ⁑ ( x ) , V ⁑ ( x ) Ο€ ⁒ Ai ⁑ ( x ) , V ⁑ ( x ) = Ο€ ⁒ Ai ⁑ ( x ) for x = 9 ⁒ ( .001 ) ⁒ 9 . Precision is 7S.

  • β–Ί
  • National Bureau of Standards (1958) tabulates A 0 ⁑ ( x ) Ο€ ⁒ Hi ⁑ ( x ) and A 0 ⁑ ( x ) Ο€ ⁒ Hi ⁑ ( x ) for x = 0 ⁒ ( .01 ) ⁒ 1 ⁒ ( .02 ) ⁒ 5 ⁒ ( .05 ) ⁒ 11 and 1 / x = 0.01 ⁒ ( .01 ) ⁒ 0.1 ; 0 x A 0 ⁑ ( t ) ⁒ d t for x = 0.5 , 1 ⁒ ( 1 ) ⁒ 11 . Precision is 8D.

  • β–Ί
  • Nosova and Tumarkin (1965) tabulates e 0 ⁑ ( x ) Ο€ ⁒ Hi ⁑ ( x ) , e 0 ⁑ ( x ) = Ο€ ⁒ Hi ⁑ ( x ) , e ~ 0 ⁒ ( x ) Ο€ ⁒ Gi ⁑ ( x ) , e ~ 0 ⁒ ( x ) = Ο€ ⁒ Gi ⁑ ( x ) for x = 1 ⁒ ( .01 ) ⁒ 10 ; 7D. Also included are the real and imaginary parts of e 0 ⁑ ( z ) and i ⁒ e 0 ⁑ ( z ) , where z = i ⁒ y and y = 0 ⁒ ( .01 ) ⁒ 9 ; 6-7D.

  • 25: 11.11 Asymptotic Expansions of Anger–Weber Functions
    β–ΊLet F 0 ⁒ ( Ξ½ ) = G 0 ⁒ ( Ξ½ ) = 1 , and for k = 1 , 2 , 3 , , … β–Ί
    a 2 ⁑ ( λ ) = 9 ⁒ λ 2 λ 24 ⁒ ( 1 + λ ) 7 ,
    β–ΊAlso, as Ξ½ in | ph ⁑ Ξ½ | 2 ⁒ Ο€ Ξ΄ , … β–ΊWhen Ξ½ is real and positive, all of (11.11.10)–(11.11.17) can be regarded as special cases of two asymptotic expansions given in Olver (1997b, pp. 352–360) for 𝐀 Ξ½ ⁑ ( Ξ» ⁒ Ξ½ ) as Ξ½ + , one being uniform for 0 < Ξ» 1 , and the other being uniform for Ξ» 1 . (Note that Olver’s definition of 𝐀 Ξ½ ⁑ ( z ) omits the factor 1 / Ο€ in (11.10.4).) …
    26: 4.25 Continued Fractions
    β–Ί
    4.25.2 tan ⁑ ( a ⁒ z ) = a ⁒ tan ⁑ z 1 + ( 1 a 2 ) ⁒ tan 2 ⁑ z 3 + ( 4 a 2 ) ⁒ tan 2 ⁑ z 5 + ( 9 a 2 ) ⁒ tan 2 ⁑ z 7 + ⁒ β‹― , | ⁑ z | < 1 2 ⁒ Ο€ , a ⁒ z ± 1 2 ⁒ Ο€ , ± 3 2 ⁒ Ο€ , .
    β–Ί
    4.25.3 arcsin ⁑ z 1 z 2 = z 1 1 2 ⁒ z 2 3 1 2 ⁒ z 2 5 3 4 ⁒ z 2 7 3 4 ⁒ z 2 9 ⁒ β‹― ,
    β–Ί
    4.25.4 arctan ⁑ z = z 1 + z 2 3 + 4 ⁒ z 2 5 + 9 ⁒ z 2 7 + 16 ⁒ z 2 9 + ⁒ β‹― ,
    β–Ί
    4.25.5 e 2 ⁒ a ⁒ arctan ⁑ ( 1 / z ) = 1 + 2 ⁒ a z a + a 2 + 1 3 ⁒ z + a 2 + 4 5 ⁒ z + a 2 + 9 7 ⁒ z + ⁒ β‹― ,
    β–ΊSee also Cuyt et al. (2008, pp. 201–203, 205–210).
    27: 4.42 Solution of Triangles
    β–Ί
    4.42.1 sin ⁑ A = a c = 1 csc ⁑ A ,
    β–Ί
    4.42.2 cos ⁑ A = b c = 1 sec ⁑ A ,
    β–Ί
    4.42.3 tan ⁑ A = a b = 1 cot ⁑ A .
    β–Ί
    4.42.7 area = 1 2 ⁒ b ⁒ c ⁒ sin ⁑ A = ( s ⁒ ( s a ) ⁒ ( s b ) ⁒ ( s c ) ) 1 / 2 ,
    β–Ίwhere s = 1 2 ⁒ ( a + b + c ) (the semiperimeter). …
    28: 1.11 Zeros of Polynomials
    β–Ίwhere z 1 , z 2 , , z n are the zeros of f ⁑ ( z ) . … β–ΊThe roots of a ⁒ z 2 + b ⁒ z + c = 0 are … β–ΊSet z = w 1 3 ⁒ a to reduce f ⁑ ( z ) = z 3 + a ⁒ z 2 + b ⁒ z + c to g ⁑ ( w ) = w 3 + p ⁒ w + q , with p = ( 3 ⁒ b a 2 ) / 3 , q = ( 2 ⁒ a 3 9 ⁒ a ⁒ b + 27 ⁒ c ) / 27 . … β–Ί f ⁑ ( z ) = z 3 6 ⁒ z 2 + 6 ⁒ z 2 , g ⁑ ( w ) = w 3 6 ⁒ w 6 , A = 3 ⁒ 4 3 , B = 3 ⁒ 2 3 . … β–ΊResolvent cubic is z 3 + 12 ⁒ z 2 + 20 ⁒ z + 9 = 0 with roots ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 11 + 85 ) , ΞΈ 3 = 1 2 ⁒ ( 11 85 ) , and ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 17 + 5 ) , ΞΈ 3 = 1 2 ⁒ ( 17 5 ) . …
    29: 10.41 Asymptotic Expansions for Large Order
    β–ΊAlso, U k ⁑ ( p ) and V k ⁑ ( p ) are polynomials in p of degree 3 ⁒ k , given by U 0 ⁑ ( p ) = V 0 ⁑ ( p ) = 1 , and … β–ΊFor k = 1 , 2 , 3 , … β–ΊFor numerical tables of Ξ· = Ξ· ⁑ ( z ) and the coefficients U k ⁑ ( p ) , V k ⁑ ( p ) , see Olver (1962, pp. 43–51). … β–ΊThe expansions (10.41.3)–(10.41.6) also hold uniformly in the sector | ph ⁑ z | 1 2 ⁒ Ο€ Ξ΄ ( < 1 2 ⁒ Ο€ ) , with the branches of the fractional powers in (10.41.3)–(10.41.8) extended by continuity from the positive real z -axis. … β–ΊThis is because A k ⁑ ( ΞΆ ) and ΞΆ 1 2 ⁒ B k ⁑ ( ΞΆ ) , k = 0 , 1 , , do not form an asymptotic scale (§2.1(v)) as ΞΆ + ; see Olver (1997b, pp. 422–425). …
    30: 18.8 Differential Equations
    β–Ί
    Table 18.8.1: Classical OP’s: differential equations A ⁑ ( x ) ⁒ f ′′ ⁑ ( x ) + B ⁑ ( x ) ⁒ f ⁑ ( x ) + C ⁑ ( x ) ⁒ f ⁑ ( x ) + Ξ» n ⁒ f ⁑ ( x ) = 0 .
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    # f ⁑ ( x ) A ⁑ ( x ) B ⁑ ( x ) C ⁑ ( x ) λ n
    1 P n ( α , β ) ⁑ ( x ) 1 x 2 β α ( α + β + 2 ) ⁒ x 0 n ⁒ ( n + α + β + 1 )
    8 L n ( α ) ⁑ ( x ) x α + 1 x 0 n
    9 e 1 2 ⁒ x 2 ⁒ x α + 1 2 ⁒ L n ( α ) ⁑ ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) ⁒ x 2 4 ⁒ n + 2 ⁒ α + 2
    β–Ί