About the Project

rotation%20of%20argument

AdvancedHelp

(0.002 seconds)

31—40 of 248 matching pages

31: Peter L. Walker
32: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 33: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 34: 5.22 Tables
    Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. … This reference also includes ψ ( x + i y ) for the same arguments to 5D. …
    35: Viewing DLMF Interactive 3D Graphics
    Users can render a 3D scene and interactively rotate, scale, and otherwise explore a function surface. …
    36: Software Index
    37: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    38: 22.19 Physical Applications
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) ) ,
    22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E ) ,
    See accompanying text
    Figure 22.19.1: Jacobi’s amplitude function am ( x , k ) for 0 x 10 π and k = 0.5 , 0.9999 , 1.0001 , 2 . When k < 1 , am ( x , k ) increases monotonically indicating that the motion of the pendulum is unbounded in θ , corresponding to free rotation about the fulcrum; compare Figure 22.16.1. … Magnify
    The classical rotation of rigid bodies in free space or about a fixed point may be described in terms of elliptic, or hyperelliptic, functions if the motion is integrable (Audin (1999, Chapter 1)). …
    39: Philip J. Davis
    After receiving an overview of the project and watching a short demo that included a few preliminary colorful, but static, 3D graphs constructed for the first Chapter, “Airy and Related Functions”, written by Olver, Davis expressed the hope that designing a web-based resource would allow the team to incorporate interesting computer graphics, such as function surfaces that could be rotated and examined. … DLMF users can rotate, rescale, zoom and otherwise explore mathematical function surfaces. …
    40: 22.3 Graphics
    sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
    See accompanying text
    Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify