About the Project

.世界杯各队主教练年薪『网址:style』.世界杯季军怎么算-m6q3s2-2022年12月1日13时59分20秒

AdvancedHelp

The term"m6q3s2" was not found.

(0.007 seconds)

1—10 of 837 matching pages

1: Guide to Searching the DLMF
Table 1: Query Examples
Query Matching records contain
1/(2pi) and "Fourier transform" both 1 / ( 2 π ) and the phrase “Fourier transform”.
Sometimes there are distinctions between various special function names based on font style, such as the use of bold or calligraphic letters. DLMF search recognizes just the essential font differences, that is, the font style differences deemed important for the DLMF contents: … If you don’t specify the font style or font accessories in the query, the style and accessories won’t matter in the search, but if you specify them, they will matter. …
2: 34.6 Definition: 9 j Symbol
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
3: 34.7 Basic Properties: 9 j Symbol
34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
Odd permutations of columns or rows introduce a phase factor ( 1 ) R , where R is the sum of all arguments of the 9 j symbol. …
34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
4: 12 Parabolic Cylinder Functions
Chapter 12 Parabolic Cylinder Functions
5: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
4.17.1 lim z 0 sin z z = 1 ,
4.17.2 lim z 0 tan z z = 1 .
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
6: 32.3 Graphics
See accompanying text
Figure 32.3.1: w k ( x ) for 12 x 1.33 and k = 0.5 , 0.75 , 1 , 1.25 , and the parabola 6 w 2 + x = 0 , shown in black. Magnify
with β = 0 , α = 2 ν + 1 , and …
See accompanying text
Figure 32.3.7: u k ( x ; 1 2 ) for 12 x 4 with k = 0.33554 691 , 0.33554 692 . … Magnify
See accompanying text
Figure 32.3.8: u k ( x ; 1 2 ) for 12 x 4 with k = 0.47442 , 0.47443 . …The curves u 2 + 1 3 x ± 1 6 x 2 + 12 = 0 are shown in green and black, respectively. Magnify
7: 28.16 Asymptotic Expansions for Large q
Let s = 2 m + 1 , m = 0 , 1 , 2 , , and ν be fixed with m < ν < m + 1 . …
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
8: 10.48 Graphs
See accompanying text
Figure 10.48.1: 𝗃 n ( x ) , n = 0 ( 1 ) 4 , 0 x 12 . Magnify
See accompanying text
Figure 10.48.2: 𝗒 n ( x ) , n = 0 ( 1 ) 4 , 0 < x 12 . Magnify
See accompanying text
Figure 10.48.3: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
See accompanying text
Figure 10.48.4: 𝗃 5 ( x ) , 𝗒 5 ( x ) , 𝗃 5 2 ( x ) + 𝗒 5 2 ( x ) , 0 x 12 . Magnify
See accompanying text
Figure 10.48.6: 𝗂 1 ( 1 ) ( x ) , 𝗂 1 ( 2 ) ( x ) , 𝗄 1 ( x ) , 0 x 4 . Magnify
9: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 10: 27.2 Functions
    ( ν ( 1 ) is defined to be 0.) Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … If ( a , n ) = 1 , then the Euler–Fermat theorem states that …Note that J 1 ( n ) = ϕ ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …