Index
Notations
Search
Need Help?
How to Cite
Customize
Annotate
UnAnnotate
About the Project
⇑
29
Lamé Functions
⇑
Lamé Functions
⇐
29.3
Definitions and Basic Properties
29.5
Special Cases and Limiting Forms
⇒
§29.4
Graphics
Permalink:
http://dlmf.nist.gov/29.4
Contents
§29.4(i)
Eigenvalues of Lamé’s Equation: Line Graphs
§29.4(ii)
Eigenvalues of Lamé’s Equation: Surfaces
§29.4(iii)
Lamé Functions: Line Graphs
§29.4(iv)
Lamé Functions: Surfaces
§29.4(i)
Eigenvalues of Lamé’s Equation: Line Graphs
Notes:
These graphs were produced at NIST.
Keywords:
Lamé functions
Permalink:
http://dlmf.nist.gov/29.4.i
Figure 29.4.1:
,
as functions of
for
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
,
: nonnegative integer
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F1
Encodings:
pdf
,
png
Figure 29.4.2:
as a function of
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F2
Encodings:
pdf
,
png
Figure 29.4.3:
,
as functions of
for
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
,
: nonnegative integer
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F3
Encodings:
pdf
,
png
Figure 29.4.4:
,
as functions of
for
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
,
: nonnegative integer
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F4
Encodings:
pdf
,
png
Figure 29.4.5:
,
as functions of
for
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
,
: nonnegative integer
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F5
Encodings:
pdf
,
png
Figure 29.4.6:
as a function of
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F6
Encodings:
pdf
,
png
Figure 29.4.7:
as a function of
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F7
Encodings:
pdf
,
png
Figure 29.4.8:
,
as functions of
for
.
Symbols:
: eigenvalues of Lamé’s equation
,
: eigenvalues of Lamé’s equation
,
: nonnegative integer
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F8
Encodings:
pdf
,
png
§29.4(ii)
Eigenvalues of Lamé’s Equation: Surfaces
Notes:
These surfaces were produced at NIST.
Keywords:
Lamé functions
Permalink:
http://dlmf.nist.gov/29.4.ii
Visualization Help
Figure 29.4.9:
as a function of
and
.
Symbols:
: eigenvalues of Lamé’s equation
,
: real parameter
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F9
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.10:
as a function of
and
.
Symbols:
: eigenvalues of Lamé’s equation
,
: real parameter
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F10
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.11:
as a function of
and
.
Symbols:
: eigenvalues of Lamé’s equation
,
: real parameter
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F11
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.12:
as a function of
and
.
Symbols:
: eigenvalues of Lamé’s equation
,
: real parameter
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F12
Encodings:
VRML
,
X3D
,
pdf
,
png
§29.4(iii)
Lamé Functions: Line Graphs
Notes:
These graphs were produced at NIST.
Keywords:
Lamé functions
Permalink:
http://dlmf.nist.gov/29.4.iii
Figure 29.4.13:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F13
Encodings:
pdf
,
png
Figure 29.4.14:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F14
Encodings:
pdf
,
png
Figure 29.4.15:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F15
Encodings:
pdf
,
png
Figure 29.4.16:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F16
Encodings:
pdf
,
png
Figure 29.4.17:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F17
Encodings:
pdf
,
png
Figure 29.4.18:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F18
Encodings:
pdf
,
png
Figure 29.4.19:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F19
Encodings:
pdf
,
png
Figure 29.4.20:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F20
Encodings:
pdf
,
png
Figure 29.4.21:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F21
Encodings:
pdf
,
png
Figure 29.4.22:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F22
Encodings:
pdf
,
png
Figure 29.4.23:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F23
Encodings:
pdf
,
png
Figure 29.4.24:
for
,
.
.
Symbols:
: Lamé function
,
: Legendre’s complete elliptic integral of the first kind
,
: nonnegative integer
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F24
Encodings:
pdf
,
png
§29.4(iv)
Lamé Functions: Surfaces
Notes:
These surfaces were produced at NIST.
Keywords:
Lamé functions
Permalink:
http://dlmf.nist.gov/29.4.iv
Visualization Help
Figure 29.4.25:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F25
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.26:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F26
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.27:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F27
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.28:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F28
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.29:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F29
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.30:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F30
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.31:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F31
Encodings:
VRML
,
X3D
,
pdf
,
png
Visualization Help
Figure 29.4.32:
as a function of
and
.
Symbols:
: Lamé function
,
: real variable
and
: real parameter
Permalink:
http://dlmf.nist.gov/29.4.F32
Encodings:
VRML
,
X3D
,
pdf
,
png
Choose format for 3D interactive visualization
Format
VRML
X3D
Use this format for vizualizations from now on.
Cancel
OK
Please see
Visualization Help
for details, and
Customize
to change your choice, or for other customizations.