About the Project

zonal spherical harmonics

AdvancedHelp

(0.002 seconds)

1—10 of 110 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
§14.30 Spherical and Spheroidal Harmonics
§14.30(i) Definitions
§14.30(iii) Sums
2: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
Normalization
Orthogonal Invariance
Summation
Mean-Value
3: 18.38 Mathematical Applications
Zonal Spherical Harmonics
Ultraspherical polynomials are zonal spherical harmonics. …
4: 35.11 Tables
§35.11 Tables
Tables of zonal polynomials are given in James (1964) for | κ | 6 , Parkhurst and James (1974) for | κ | 12 , and Muirhead (1982, p. 238) for | κ | 5 . Each table expresses the zonal polynomials as linear combinations of monomial symmetric functions.
5: 35.12 Software
  • Demmel and Koev (2006). Computation of zonal polynomials in MATLAB.

  • Stembridge (1995). Maple software for zonal polynomials.

  • For an algorithm to evaluate zonal polynomials, and an implementation of the algorithm in Maple by Zeilberger, see Lapointe and Vinet (1996).
    6: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • A. Terras (1988) Harmonic Analysis on Symmetric Spaces and Applications. II. Springer-Verlag, Berlin.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • T. Ton-That, K. I. Gross, D. St. P. Richards, and P. J. Sally (Eds.) (1995) Representation Theory and Harmonic Analysis. Contemporary Mathematics, Vol. 191, American Mathematical Society, Providence, RI.
  • 7: 15.17 Mathematical Applications
    §15.17(iii) Group Representations
    For harmonic analysis it is more natural to represent hypergeometric functions as a Jacobi function (§15.9(ii)). …First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. …
    8: Bibliography G
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • A. Gil and J. Segura (1998) A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Comm. 108 (2-3), pp. 267–278.
  • A. Gil and J. Segura (2000) Evaluation of toroidal harmonics. Comput. Phys. Comm. 124 (1), pp. 104–122.
  • A. Gil and J. Segura (2001) DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics. Comput. Phys. Comm. 139 (2), pp. 186–191.
  • K. I. Gross and D. St. P. Richards (1987) Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Amer. Math. Soc. 301 (2), pp. 781–811.
  • 9: 35.10 Methods of Computation
    For small values of 𝐓 the zonal polynomial expansion given by (35.8.1) can be summed numerically. … Koev and Edelman (2006) utilizes combinatorial identities for the zonal polynomials to develop computational algorithms for approximating the series expansion (35.8.1). …
    10: 34.3 Basic Properties: 3 j Symbol
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    For the polynomials P l see §18.3, and for the function Y l , m see §14.30.
    34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
    34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
    34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .