with complex parameter

(0.008 seconds)

1—10 of 293 matching pages

1: 31.3 Basic Solutions
31.3.5 $z^{1-\gamma}\mathit{H\!\ell}\left(a,(a\delta+\epsilon)(1-\gamma)+q;\alpha+1-% \gamma,\beta+1-\gamma,2-\gamma,\delta;z\right).$
31.3.6 $\mathit{H\!\ell}\left(1-a,\alpha\beta-q;\alpha,\beta,\delta,\gamma;1-z\right),$
31.3.8 $\mathit{H\!\ell}\left(\frac{a}{a-1},\frac{\alpha\beta a-q}{a-1};\alpha,\beta,% \epsilon,\delta;\frac{a-z}{a-1}\right),$
31.3.12 $\mathit{H\!\ell}\left(1/a,q/a;\alpha,\beta,\gamma,\alpha+\beta+1-\gamma-\delta% ;z/a\right),$
2: 31.1 Special Notation
 $x$, $y$ real variables. … complex parameter, $|a|\geq 1,a\neq 1$. complex parameters.
3: 15.7 Continued Fractions
15.7.1 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a,b+1;c+1;z\right)}=t_{0% }-\cfrac{u_{1}z}{t_{1}-\cfrac{u_{2}z}{t_{2}-\cfrac{u_{3}z}{t_{3}-\cdots}}},$
15.7.3 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a,b+1;c+1;z\right)}=v_{0% }-\cfrac{w_{1}}{v_{1}-\cfrac{w_{2}}{v_{2}-\cfrac{w_{3}}{v_{3}-\cdots}}},$
15.7.5 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a+1,b+1;c+1;z\right)}={x% _{0}+\cfrac{y_{1}}{x_{1}+\cfrac{y_{2}}{x_{2}+\cfrac{y_{3}}{x_{3}+\cdots}}}},$
4: 31.12 Confluent Forms of Heun’s Equation
31.12.1 $\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(\frac{\gamma}{z}+\frac{% \delta}{z-1}+\epsilon\right)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{\alpha z-q}{% z(z-1)}w=0.$
31.12.2 $\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(\frac{\delta}{z^{2}}+\frac{% \gamma}{z}+1\right)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{\alpha z-q}{z^{2}}w=0.$
31.12.3 $\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}-\left(\frac{\gamma}{z}+\delta+z% \right)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{\alpha z-q}{z}w=0.$
5: 31.14 General Fuchsian Equation
31.14.1 ${\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(\sum_{j=1}^{N}\frac{\gamma_% {j}}{z-a_{j}}\right)\frac{\mathrm{d}w}{\mathrm{d}z}+\left(\sum_{j=1}^{N}\frac{% q_{j}}{z-a_{j}}\right)w=0},$ $\sum_{j=1}^{N}q_{j}=0$.
31.14.3 $w(z)=\left(\prod_{j=1}^{N}(z-a_{j})^{-\gamma_{j}/2}\right)W(z),$
31.14.4 $\frac{{\mathrm{d}}^{2}W}{{\mathrm{d}z}^{2}}=\sum_{j=1}^{N}\left(\frac{\tilde{% \gamma}_{j}}{(z-a_{j})^{2}}+\frac{\tilde{q}_{j}}{z-a_{j}}\right)W,$ $\sum_{j=1}^{N}\tilde{q}_{j}=0$,
6: 15.5 Derivatives and Contiguous Functions
15.5.1 $\frac{\mathrm{d}}{\mathrm{d}z}F\left(a,b;c;z\right)=\frac{ab}{c}F\left(a+1,b+1% ;c+1;z\right),$
15.5.2 $\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}F\left(a,b;c;z\right)=\frac{{\left(a% \right)_{n}}{\left(b\right)_{n}}}{{\left(c\right)_{n}}}\*F\left(a+n,b+n;c+n;z% \right).$
15.5.3 $\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}\left(z^{a-1}F\left(a,b;c;z% \right)\right)={\left(a\right)_{n}}z^{a+n-1}F\left(a+n,b;c;z\right).$
15.5.4 $\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^{c-1}F\left(a,b;c;z\right)% \right)={\left(c-n\right)_{n}}z^{c-n-1}F\left(a,b;c-n;z\right).$
15.5.11 $(c-a)F\left(a-1,b;c;z\right)+\left(2a-c+(b-a)z\right)F\left(a,b;c;z\right)+a(z% -1)F\left(a+1,b;c;z\right)=0,$
7: 9.14 Incomplete Airy Functions
Incomplete Airy functions are defined by the contour integral (9.5.4) when one of the integration limits is replaced by a variable real or complex parameter. …
8: 31.4 Solutions Analytic at Two Singularities: Heun Functions
31.4.1 $(0,1)\mathit{Hf}_{m}\left(a,q_{m};\alpha,\beta,\gamma,\delta;z\right),$ $m=0,1,2,\dots$.
31.4.3 $(s_{1},s_{2})\mathit{Hf}_{m}\left(a,q_{m};\alpha,\beta,\gamma,\delta;z\right),$ $m=0,1,2,\dots$,
9: 31.6 Path-Multiplicative Solutions
31.6.1 $(s_{1},s_{2})\mathit{Hf}_{m}^{\nu}\left(a,q_{m};\alpha,\beta,\gamma,\delta;z% \right),$ $m=0,1,2,\dots$,
10: 15.1 Special Notation
 $x$ real variable. … real or complex parameters. …
15.1.1 ${{}_{2}F_{1}}\left(a,b;c;z\right)=F\left(a,b;c;z\right)=F\left({a,b\atop c};z% \right),$