About the Project

values%20at%20z%3D0

AdvancedHelp

(0.006 seconds)

11—20 of 906 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 36.5 Stokes Sets
In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. …
K = 3 . Swallowtail
The Stokes set takes different forms for z = 0 , z < 0 , and z > 0 . For z = 0 , the set consists of the two curves … This consists of three separate cusp-edged sheets connected to the cusp-edged sheets of the bifurcation set, and related by rotation about the z -axis by 2 π / 3 . …
13: 3.4 Differentiation
For the values of n 0 and n 1 used in the formulas below …where c n is defined by (3.3.12), with numerical values as in §3.3(ii). … Taking C to be a circle of radius r centered at x 0 , we obtain … With the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points θ = 0 , 2 π , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . … For additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
14: 32.8 Rational Solutions
P II P VI  possess hierarchies of rational solutions for special values of the parameters which are generated from “seed solutions” using the Bäcklund transformations and often can be expressed in the form of determinants. … where the Q n ( z ) are monic polynomials (coefficient of highest power of z is 1 ) satisfying …with Q 0 ( z ) = 1 , Q 1 ( z ) = z . … Next, let p m ( z ) be the polynomials defined by p m ( z ) = 0 for m < 0 , and … where n , a = ε 1 2 α , b = ε 2 2 β , c = ε 3 2 γ , and d = ε 4 1 2 δ , with ε j = ± 1 , j = 1 , 2 , 3 , 4 , independently, and at least one of a , b , c or d is an integer. …
15: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
16: Wolter Groenevelt
 1976 in Leidschendam, the Netherlands) is an Associate Professor at the Delft University of Technology in Delft, The Netherlands. …  in mathematics at the Delft University of Technology in 2004. … As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
17: 28.35 Tables
§28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 18: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 19: 20.7 Identities
    Also, in further development along the lines of the notations of Neville (§20.1) and of Glaisher (§22.2), the identities (20.7.6)–(20.7.9) have been recast in a more symmetric manner with respect to suffices 2 , 3 , 4 . … See Lawden (1989, pp. 19–20). … See also Carlson (2011, §3). … In the following equations τ = 1 / τ , and all square roots assume their principal values. …
    20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
    20: 18.40 Methods of Computation
    There are many ways to implement these first two steps, noting that the expressions for α n and β n of equation (18.2.30) are of little practical numerical value, see Gautschi (2004) and Golub and Meurant (2010). … The question is then: how is this possible given only F N ( z ) , rather than F ( z ) itself? F N ( z ) often converges to smooth results for z off the real axis for z at a distance greater than the pole spacing of the x n , this may then be followed by approximate numerical analytic continuation via fitting to lower order continued fractions (either Padé, see §3.11(iv), or pointwise continued fraction approximants, see Schlessinger (1968, Appendix)), to F N ( z ) and evaluating these on the real axis in regions of higher pole density that those of the approximating function. Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … This is a challenging case as the desired w RCP ( x ) on [ 1 , 1 ] has an essential singularity at x = 1 . … Achieving precisions at this level shown above requires higher than normal computational precision, see Gautschi (2009). …