About the Project

uniformization problem

AdvancedHelp

(0.002 seconds)

11—20 of 27 matching pages

11: Bibliography B
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • M. V. Berry (1969) Uniform approximation: A new concept in wave theory. Science Progress (Oxford) 57, pp. 43–64.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 12: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations (§3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. …
    §18.40(ii) The Classical Moment Problem
    The problem of moments is simply stated and the early work of Stieltjes, Markov, and Chebyshev on this problem was the origin of the understanding of the importance of both continued fractions and OP’s in many areas of analysis. Given the power moments, μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , , can these be used to find a unique μ ( x ) , a non-decreasing, real, function of x , in the case that the moment problem is determined? Should a unique solution not exist the moment problem is then indeterminant. …
    13: 18.35 Pollaczek Polynomials
    This expansion is in terms of the Airy function Ai ( x ) and its derivative (§9.2), and is uniform in any compact θ -interval in ( 0 , ) . … These polynomials also occur in connection with the Coulomb problem, see §18.39(iv).
    14: Bibliography J
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.
  • N. Joshi and M. D. Kruskal (1992) The Painlevé connection problem: An asymptotic approach. I. Stud. Appl. Math. 86 (4), pp. 315–376.
  • 15: Bibliography E
  • D. Elliott (1971) Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comp. 25 (114), pp. 309–315.
  • W. J. Ellison (1971) Waring’s problem. Amer. Math. Monthly 78 (1), pp. 10–36.
  • 16: Bibliography L
  • V. Laĭ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • W. Lay and S. Yu. Slavyanov (1998) The central two-point connection problem for the Heun class of ODEs. J. Phys. A 31 (18), pp. 4249–4261.
  • N. N. Lebedev, I. P. Skalskaya, and Y. S. Uflyand (1965) Problems of Mathematical Physics. Revised, enlarged and corrected English edition; translated and edited by Richard A. Silverman. With a supplement by Edward L. Reiss, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • 17: Bibliography S
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • I. N. Sneddon (1966) Mixed Boundary Value Problems in Potential Theory. North-Holland Publishing Co., Amsterdam.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • 18: Bibliography O
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • A. B. Olde Daalhuis (1998c) On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function. Methods Appl. Anal. 5 (4), pp. 425–438.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • 19: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer, S. P. Nørsett, and G. Wanner (2000) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996) Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • G. H. Hardy and J. E. Littlewood (1925) Some problems of “Partitio Numerorum” (VI): Further researches in Waring’s Problem. Math. Z. 23, pp. 1–37.
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • 20: 3.11 Approximation Techniques
    §3.11(i) Minimax Polynomial Approximations
    Then there exists a unique n th degree polynomial p n ( x ) , called the minimax (or best uniform) polynomial approximation to f ( x ) on [ a , b ] , that minimizes max a x b | ϵ n ( x ) | , where ϵ n ( x ) = f ( x ) p n ( x ) . …
    §3.11(iii) Minimax Rational Approximations
    Then the minimax (or best uniform) rational approximation … There exists a unique solution of this minimax problem and there are at least k + + 2 values x j , a x 0 < x 1 < < x k + + 1 b , such that m j = m , where …