About the Project

transformations of parameters

AdvancedHelp

(0.004 seconds)

11—20 of 81 matching pages

11: 9.10 Integrals
9.10.14 0 e p t Ai ( t ) d t = e p 3 / 3 ( 1 3 p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) , p .
9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
9.10.17 0 t α 1 Ai ( t ) d t = Γ ( α ) 3 ( α + 2 ) / 3 Γ ( 1 3 α + 2 3 ) , α > 0 .
12: Bibliography T
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 13: Bibliography L
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • 14: 2.8 Differential Equations with a Parameter
    In Case III f ( z ) has a simple pole at z 0 and ( z z 0 ) 2 g ( z ) is analytic at z 0 . …
    15: 19.15 Advantages of Symmetry
    (19.21.12) unifies the three transformations in §19.7(iii) that change the parameter of Legendre’s third integral. …
    16: 32.7 Bäcklund Transformations
    With the exception of P I , a Bäcklund transformation relates a Painlevé transcendent of one type either to another of the same type but with different values of the parameters, or to another type. … and
    32.7.44 θ j = Θ j + 1 2 σ ,
    32.7.45 σ = θ 0 + θ 1 + θ 2 + θ 1 = 1 ( Θ 0 + Θ 1 + Θ 2 + Θ ) .
    32.7.46 σ w W = z ( z 1 ) W W ( W 1 ) ( W z ) + Θ 0 W + Θ 1 W 1 + Θ 2 1 W z = z ( z 1 ) w w ( w 1 ) ( w z ) + θ 0 w + θ 1 w 1 + θ 2 1 w z .
    17: 18.25 Wilson Class: Definitions
    Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) .
    Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
    OP p n ( x ) x = λ ( y ) Orthogonality range for y Constraints
    18: 2.4 Contour Integrals
    Then …
    19: 1.14 Integral Transforms
    If x σ 1 f ( x ) is integrable on ( 0 , ) for all σ in a < σ < b , then the integral (1.14.32) converges and f ( s ) is an analytic function of s in the vertical strip a < s < b . …
    1.14.33 lim t ± f ( σ + i t ) = 0 .
    1.14.35 f ( x ) = 1 2 π i σ i σ + i x s f ( s ) d s .
    1.14.37 0 f ( x ) g ( x ) d x = 1 2 π i σ i σ + i f ( 1 s ) g ( s ) d s .
    1.14.49 lim t 0 + 𝒮 f ( σ i t ) 𝒮 f ( σ + i t ) 2 π i = 1 2 ( f ( σ + ) + f ( σ ) ) ,
    20: 15.8 Transformations of Variable
    15.8.12 𝐅 ( a , b ; a + b m ; z ) = ( 1 z ) m 𝐅 ( a ~ , b ~ ; a ~ + b ~ + m ; z ) , a ~ = a m , b ~ = b m .
    15.8.28 2 z Γ ( 1 2 ) Γ ( a + b 1 2 ) Γ ( a 1 2 ) Γ ( b 1 2 ) F ( a , b ; 3 2 ; z ) = F ( 2 a 1 , 2 b 1 ; a + b 1 2 ; 1 2 1 2 z ) F ( 2 a 1 , 2 b 1 ; a + b 1 2 ; 1 2 + 1 2 z ) , | ph z | < π , | ph ( 1 z ) | < π .
    When the intersection of two groups in Table 15.8.1 is not empty there exist special quadratic transformations, with only one free parameter, between two hypergeometric functions in the same group. …