About the Project

symmetric elliptic%0Aintegrals

AdvancedHelp

(0.002 seconds)

41—50 of 738 matching pages

41: 35.1 Special Notation
a , b complex variables.
𝓢 space of all real symmetric matrices.
𝐒 , 𝐓 , 𝐗 real symmetric matrices.
𝛀 space of positive-definite real symmetric matrices.
𝐙 complex symmetric matrix.
Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
42: 19.31 Probability Distributions
§19.31 Probability Distributions
43: 22.8 Addition Theorems
§22.8 Addition Theorems
§22.8(iii) Special Relations Between Arguments
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
If sums/differences of the z j ’s are rational multiples of K ( k ) , then further relations follow. …
44: 35.5 Bessel Functions of Matrix Argument
35.5.5 𝟎 < 𝐗 < 𝐓 A ν 1 ( 𝐒 1 𝐗 ) | 𝐗 | ν 1 A ν 2 ( 𝐒 2 ( 𝐓 𝐗 ) ) | 𝐓 𝐗 | ν 2 d 𝐗 = | 𝐓 | ν 1 + ν 2 + 1 2 ( m + 1 ) A ν 1 + ν 2 + 1 2 ( m + 1 ) ( ( 𝐒 1 + 𝐒 2 ) 𝐓 ) , ν j , ( ν j ) > 1 , j = 1 , 2 ; 𝐒 1 , 𝐒 2 𝓢 ; 𝐓 𝛀 .
35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
45: 22.4 Periods, Poles, and Zeros
§22.4(i) Distribution
Figure 22.4.1 illustrates the locations in the z -plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices 0 , 2 K , 2 K + 2 i K , 2 i K . … Figure 22.4.2 depicts the fundamental unit cell in the z -plane, with vertices s = 0 , c = K , d = K + i K , n = i K . …
46: 22.21 Tables
§22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
47: 22.17 Moduli Outside the Interval [0,1]
§22.17 Moduli Outside the Interval [0,1]
§22.17(i) Real or Purely Imaginary Moduli
Jacobian elliptic functions with real moduli in the intervals ( , 0 ) and ( 1 , ) , or with purely imaginary moduli are related to functions with moduli in the interval [ 0 , 1 ] by the following formulas. …
§22.17(ii) Complex Moduli
For proofs of these results and further information see Walker (2003).
48: 23.6 Relations to Other Functions
§23.6(ii) Jacobian Elliptic Functions
§23.6(iii) General Elliptic Functions
§23.6(iv) Elliptic Integrals
For relations to symmetric elliptic integrals see §19.25(vi). …
49: 22.1 Special Notation
x , y real variables.
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
50: 22.5 Special Values
For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . …
§22.5(ii) Limiting Values of k
If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. …