About the Project

sums%20of%20powers

AdvancedHelp

(0.002 seconds)

9 matching pages

1: 24.20 Tables
§24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
2: 27.2 Functions
Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. … where p a is a prime power with a 1 ; otherwise Λ ( n ) = 0 . …
3: 23.9 Laurent and Other Power Series
§23.9 Laurent and Other Power Series
23.9.1 c n = ( 2 n 1 ) w 𝕃 { 0 } w 2 n , n = 2 , 3 , 4 , .
23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
c 2 = 1 20 g 2 ,
23.9.5 c n = 3 ( 2 n + 1 ) ( n 3 ) m = 2 n 2 c m c n m , n 4 .
4: 32.8 Rational Solutions
32.8.3 w ( z ; 3 ) = 3 z 2 z 3 + 4 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 ,
32.8.4 w ( z ; 4 ) = 1 z + 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 9 z 5 ( z 3 + 40 ) z 9 + 60 z 6 + 11200 .
where the Q n ( z ) are monic polynomials (coefficient of highest power of z is 1 ) satisfying …
Q 3 ( z ) = z 6 + 20 z 3 80 ,
32.8.8 m = 0 p m ( z ) λ m = exp ( z λ 4 3 λ 3 ) .
5: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by
20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). …
6: 2.11 Remainder Terms; Stokes Phenomenon
If we permit the use of nonelementary functions as approximants, then even more powerful re-expansions become available. … These answers are linked to the terms involving the complementary error function in the more powerful expansions typified by the combination of (2.11.10) and (2.11.15). … The first of these two references also provides an introduction to the powerful Borel transform theory. … The following example, based on Weniger (1996), illustrates their power. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
7: 19.36 Methods of Computation
When the differences are moderately small, the iteration is stopped, the elementary symmetric functions of certain differences are calculated, and a polynomial consisting of a fixed number of terms of the sum in (19.19.7) is evaluated. …
19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
19.36.13 2 R G ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = ( t 0 2 + θ m = 0 2 m 1 c m 2 ) R C ( T 2 + θ M 2 , T 2 ) + h 0 + m = 1 2 m ( h m h m 1 ) .
For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … Faster convergence of power series for K ( k ) and E ( k ) can be achieved by using (19.5.1) and (19.5.2) in the right-hand sides of (19.8.12). …
8: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 9: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • P. Groeneboom and D. R. Truax (2000) A monotonicity property of the power function of multivariate tests. Indag. Math. (N.S.) 11 (2), pp. 209–218.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.