About the Project

summability%20methods

AdvancedHelp

(0.002 seconds)

21—30 of 224 matching pages

21: 19.36 Methods of Computation
§19.36 Methods of Computation
§19.36(i) Duplication Method
For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
§19.36(iv) Other Methods
Numerical quadrature is slower than most methods for the standard integrals but can be useful for elliptic integrals that have complicated representations in terms of standard integrals. …
22: 29.20 Methods of Computation
§29.20 Methods of Computation
A second approach is to solve the continued-fraction equations typified by (29.3.10) by Newton’s rule or other iterative methods; see §3.8. … A third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). …The numerical computations described in Jansen (1977) are based in part upon this method. A fourth method is by asymptotic approximations by zeros of orthogonal polynomials of increasing degree. …
23: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 24: Bibliography D
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • N. G. de Bruijn (1961) Asymptotic Methods in Analysis. 2nd edition, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • K. Dekker and J. G. Verwer (1984) Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, Vol. 2, North-Holland Publishing Co., Amsterdam.
  • 25: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 26: Bibliography
  • A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Eds.) (2008) The J -Matrix Method. Developments and Applications. Springer-Verlag.
  • G. E. Andrews (1996) Pfaff’s method II: Diverse applications. J. Comput. Appl. Math. 68 (1-2), pp. 15–23.
  • T. M. Apostol and H. S. Zuckerman (1951) On magic squares constructed by the uniform step method. Proc. Amer. Math. Soc. 2 (4), pp. 557–565.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • V. I. Arnold (1997) Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, New York.
  • 27: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • P. L. Marston (1992) Geometrical and Catastrophe Optics Methods in Scattering. In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.), Vol. 21, pp. 1–234.
  • J. M. McNamee (2007) Numerical Methods for Roots of Polynomials. Part I. Studies in Computational Mathematics, Vol. 14, Elsevier, Amsterdam.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • S. L. B. Moshier (1989) Methods and Programs for Mathematical Functions. Ellis Horwood Ltd., Chichester.
  • 28: 8 Incomplete Gamma and Related
    Functions
    29: 28 Mathieu Functions and Hill’s Equation
    30: Bibliography L
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko (1985) Computing π ( x ) : The Meissel-Lehmer method. Math. Comp. 44 (170), pp. 537–560.
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • I. M. Longman (1956) Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.