About the Project

spherical%20coordinates

AdvancedHelp

(0.001 seconds)

21—30 of 193 matching pages

21: 10.54 Integral Representations
§10.54 Integral Representations
𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
For the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with μ = 0 and ν = n . …
22: 36.5 Stokes Sets
For z 0 , the Stokes set is expressed in terms of scaled coordinates
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
36.5.10 160 u 6 + 40 u 4 = Y 2 .
With coordinates
36.5.17 Y S ( X ) = Y ( u , | X | ) ,
23: 6.10 Other Series Expansions
§6.10(ii) Expansions in Series of Spherical Bessel Functions
6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.5 Cin ( z ) = n = 1 a n ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
24: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991) Analytic expressions for integrals of products of spherical Bessel functions. J. Phys. A 24 (7), pp. 1435–1453.
  • W. Miller (1974) Lie theory and separation of variables. I: Parabolic cylinder coordinates. SIAM J. Math. Anal. 5 (4), pp. 626–643.
  • P. Moon and D. E. Spencer (1971) Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions. 2nd edition, Springer-Verlag, Berlin.
  • 25: 22.18 Mathematical Applications
    In polar coordinates, x = r cos ϕ , y = r sin ϕ , the lemniscate is given by r 2 = cos ( 2 ϕ ) , 0 ϕ 2 π . … Discussion of parametrization of the angles of spherical trigonometry in terms of Jacobian elliptic functions is given in Greenhill (1959, p. 131) and Lawden (1989, §4.4). …
    26: 30.2 Differential Equations
    In applications involving prolate spheroidal coordinates γ 2 is positive, in applications involving oblate spheroidal coordinates γ 2 is negative; see §§30.13, 30.14. … If γ = 0 , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).
    27: 10.59 Integrals
    §10.59 Integrals
    10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
    where P n is the Legendre polynomial (§18.3). For an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
    28: 30.10 Series and Integrals
    For expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
    29: 7.6 Series Expansions
    §7.6(ii) Expansions in Series of Spherical Bessel Functions
    7.6.8 erf z = 2 z π n = 0 ( 1 ) n ( 𝗂 2 n ( 1 ) ( z 2 ) 𝗂 2 n + 1 ( 1 ) ( z 2 ) ) ,
    7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
    7.6.10 C ( z ) = z n = 0 𝗃 2 n ( 1 2 π z 2 ) ,
    7.6.11 S ( z ) = z n = 0 𝗃 2 n + 1 ( 1 2 π z 2 ) .
    30: 20 Theta Functions
    Chapter 20 Theta Functions