About the Project

soliton theory

AdvancedHelp

(0.001 seconds)

8 matching pages

1: 18.38 Mathematical Applications
Integrable Systems
However, by using Hirota’s technique of bilinear formalism of soliton theory, Nakamura (1996) shows that a wide class of exact solutions of the Toda equation can be expressed in terms of various special functions, and in particular classical OP’s. …
2: 9.16 Physical Applications
Details of the Airy theory are given in van de Hulst (1957) in the chapter on the optics of a raindrop. … Extensive use is made of Airy functions in investigations in the theory of electromagnetic diffraction and radiowave propagation (Fock (1965)). … These first appeared in connection with the equation governing the evolution of long shallow water waves of permanent form, generally called solitons, and are predicted by the Korteweg–de Vries (KdV) equation (a third-order nonlinear partial differential equation). The KdV equation and solitons have applications in many branches of physics, including plasma physics lattice dynamics, and quantum mechanics. … Reference to many of these applications as well as to the theory of elasticity and to the heat equation are given in Vallée and Soares (2010): a book devoted specifically to the Airy and Scorer functions and their applications in physics. …
3: Bibliography K
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • Y. Kivshar and B. Luther-Davies (1998) Dark optical solitons: Physics and applications. Physics Reports 298 (2-3), pp. 81–197.
  • A. Kneser (1927) Neue Untersuchungen einer Reihe aus der Theorie der elliptischen Funktionen. Journal für die Reine und Angenwandte Mathematik 158, pp. 209–218 (German).
  • K. Knopp (1964) Theorie und Anwendung der unendlichen Reihen. 4th edition, Die Grundlehren der mathematischen Wissenschaften, Band 2, Springer-Verlag, Berlin-Heidelberg (German).
  • M. Koecher (1954) Zur Theorie der Modulformen n -ten Grades. I. Math. Z. 59, pp. 399–416 (German).
  • 4: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • A. Sidi (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
  • A. O. Smirnov (2002) Elliptic Solitons and Heun’s Equation. In The Kowalevski Property (Leeds, UK, 2000), V. B. Kuznetsov (Ed.), CRM Proc. Lecture Notes, Vol. 32, pp. 287–306.
  • 5: 23.21 Physical Applications
    §23.21 Physical Applications
    §23.21(ii) Nonlinear Evolution Equations
    For applications to soliton solutions of the Korteweg–de Vries (KdV) equation see McKean and Moll (1999, p. 91), Deconinck and Segur (2000), and Walker (1996, §8.1). …
  • Quantum field theory. See Witten (1987).

  • String theory. See Green et al. (1988a, §8.2) and Polchinski (1998, §7.2).

  • 6: Bibliography D
  • H. Davenport (2000) Multiplicative Number Theory. 3rd edition, Graduate Texts in Mathematics, Vol. 74, Springer-Verlag, New York.
  • N. G. de Bruijn (1981) Pólya’s Theory of Counting. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), pp. 144–184.
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • J. B. Dence and T. P. Dence (1999) Elements of the Theory of Numbers. Harcourt/Academic Press, San Diego, CA.
  • P. G. Drazin and R. S. Johnson (1993) Solitons: An Introduction. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge.
  • 7: Bibliography H
  • B. C. Hall (2013) Quantum theory for mathematicians. Graduate Texts in Mathematics, Vol. 267, Springer, New York.
  • G. H. Hardy and E. M. Wright (1979) An Introduction to the Theory of Numbers. 5th edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • A. Hasegawa (1989) Optical Solitons in Fibers. Springer-Verlag, Berlin, Germany.
  • T. Helgaker, P. Jørgensen, and J. Olsen (2012) Molecular Electronic-Structure Theory. John Wiley & Sons, New York.
  • E. W. Hobson (1931) The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, London-New York.
  • 8: Bibliography
  • M. J. Ablowitz and P. A. Clarkson (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • M. M. Agrest and M. S. Maksimov (1971) Theory of Incomplete Cylindrical Functions and Their Applications. Springer-Verlag, Berlin.
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • T. M. Apostol and I. Niven (1994) Number Theory. In The New Encyclopaedia Britannica, Vol. 25, pp. 14–37.