About the Project

small k,k′

AdvancedHelp

(0.009 seconds)

11—20 of 70 matching pages

11: 10.40 Asymptotic Expansions for Large Argument
10.40.5 I ν ( z ) e z ( 2 π z ) 1 2 k = 0 ( 1 ) k a k ( ν ) z k ± i e ± ν π i e z ( 2 π z ) 1 2 k = 0 a k ( ν ) z k , 1 2 π + δ ± ph z 3 2 π δ .
12: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
11.11.11 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 e ν μ k = 0 ( 1 2 ) k b k ( λ ) ν k , ν , | ph ν | π 2 δ ,
13: 26.6 Other Lattice Path Numbers
26.6.8 n , k = 1 N ( n , k ) x n y k = 1 x x y ( 1 x x y ) 2 4 x 2 y 2 x ,
14: 11.9 Lommel Functions
11.9.9 S μ , ν ( z ) z μ 1 k = 0 ( 1 ) k a k ( μ , ν ) z 2 k , z , | ph z | π δ ( < π ) .
15: 10.19 Asymptotic Expansions for Large Order
Y ν ( ν sech α ) e ν ( α tanh α ) ( 1 2 π ν tanh α ) 1 2 k = 0 ( 1 ) k U k ( coth α ) ν k ,
Y ν ( ν sech α ) ( sinh ( 2 α ) π ν ) 1 2 e ν ( α tanh α ) k = 0 ( 1 ) k V k ( coth α ) ν k .
J ν ( ν sec β ) ( 2 π ν tan β ) 1 2 ( cos ξ k = 0 U 2 k ( i cot β ) ν 2 k i sin ξ k = 0 U 2 k + 1 ( i cot β ) ν 2 k + 1 ) ,
Y ν ( ν sec β ) ( 2 π ν tan β ) 1 2 ( sin ξ k = 0 U 2 k ( i cot β ) ν 2 k + i cos ξ k = 0 U 2 k + 1 ( i cot β ) ν 2 k + 1 ) ,
In these expansions U k ( p ) and V k ( p ) are the polynomials in p of degree 3 k defined in §10.41(ii). …
16: 9.7 Asymptotic Expansions
9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
9.7.9 Ai ( z ) 1 π z 1 / 4 ( cos ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k ζ 2 k + sin ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
17: 9.12 Scorer Functions
9.12.25 Gi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ ,
9.12.26 Gi ( z ) 1 π z 2 k = 0 ( 3 k + 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
9.12.27 Hi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph ( z ) | 2 3 π δ ,
9.12.28 Hi ( z ) 1 π z 2 k = 0 ( 3 k + 1 ) ! k ! ( 3 z 3 ) k , | ph ( z ) | 2 3 π δ .
18: 10.41 Asymptotic Expansions for Large Order
10.41.12 I ν ( ν z ) = e ν η ( 2 π ν ) 1 2 ( 1 + z 2 ) 1 4 ( k = 0 1 U k ( p ) ν k + O ( 1 z ) ) , | ph z | 1 2 π δ ,
10.41.13 K ν ( ν z ) = ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 ( k = 0 1 ( 1 ) k U k ( p ) ν k + O ( 1 z ) ) , | ph z | 3 2 π δ .
19: 15.1 Special Notation
x real variable.
k , , m , n integers.
δ arbitrary small positive constant.
20: 19.12 Asymptotic Approximations
They are useful primarily when ( 1 k ) / ( 1 sin ϕ ) is either small or large compared with 1. …