About the Project

small variable

AdvancedHelp

(0.002 seconds)

1—10 of 85 matching pages

1: 16.5 Integral Representations and Integrals
In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. …
2: 9.7 Asymptotic Expansions
9.7.6 Ai ( z ) z 1 / 4 e ζ 2 π k = 0 ( 1 ) k v k ζ k , | ph z | π δ ,
9.7.9 Ai ( z ) 1 π z 1 / 4 ( cos ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k ζ 2 k + sin ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
3: 9.1 Special Notation
k nonnegative integer, except in §9.9(iii).
x real variable.
z ( = x + i y ) complex variable.
δ arbitrary small positive constant.
4: 5.1 Special Notation
j , m , n nonnegative integers.
x , y real variables.
z = x + i y complex variable.
a , b , q , s , w real or complex variables with | q | < 1 .
δ arbitrary small positive constant.
primes derivatives with respect to the variable.
5: 13.1 Special Notation
m integer.
x , y real variables.
z complex variable.
δ arbitrary small positive constant.
6: 13.19 Asymptotic Expansions for Large Argument
13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .
7: 13.7 Asymptotic Expansions for Large Argument
13.7.2 𝐌 ( a , b , z ) e z z a b Γ ( a ) s = 0 ( 1 a ) s ( b a ) s s ! z s + e ± π i a z a Γ ( b a ) s = 0 ( a ) s ( a b + 1 ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
13.7.13 R m , n ( a , b , z ) = { O ( e | z | z m ) , | ph z | π , O ( e z z m ) , π | ph z | 5 2 π δ .
8: 9.13 Generalized Airy Functions
9.13.9 A n ( z ) = p / π sin ( p π ) z n / 4 e ζ ( 1 + O ( ζ 1 ) ) , | ph z | 3 p π δ ,
9.13.10 A n ( z ) = { 2 p / π cos ( 1 2 p π ) z n / 4 ( cos ( ζ 1 4 π ) + e | ζ | O ( ζ 1 ) ) , | ph z | 2 p π δ n  odd , p / π z n / 4 e ζ ( 1 + O ( ζ 1 ) ) , | ph z | p π δ n  even ,
9.13.11 B n ( z ) = π 1 / 2 z n / 4 e ζ ( 1 + O ( ζ 1 ) ) , | ph z | p π δ ,
9.13.12 B n ( z ) = { ( 2 / π ) sin ( 1 2 p π ) z n / 4 ( sin ( ζ 1 4 π ) + e | ζ | O ( ζ 1 ) ) , | ph z | 2 p π δ , n  odd , ( 1 / π ) sin ( p π ) z n / 4 e ζ ( 1 + O ( ζ 1 ) ) , | ph z | 3 p π δ , n  even .
9: 11.13 Methods of Computation
For numerical purposes the most convenient of the representations given in §11.5, at least for real variables, include the integrals (11.5.2)–(11.5.5) for 𝐊 ν ( z ) and 𝐌 ν ( z ) . …Other integrals that appear in §11.5(i) have highly oscillatory integrands unless z is small. For complex variables the methods described in §§3.5(viii) and 3.5(ix) are available. … Then from the limiting forms for small argument (§§11.2(i), 10.7(i), 10.30(i)), limiting forms for large argument (§§11.6(i), 10.7(ii), 10.30(ii)), and the connection formulas (11.2.5) and (11.2.6), it is seen that 𝐇 ν ( x ) and 𝐋 ν ( x ) can be computed in a stable manner by integrating forwards, that is, from the origin toward infinity. The solution 𝐊 ν ( x ) needs to be integrated backwards for small x , and either forwards or backwards for large x depending whether or not ν exceeds 1 2 . …
10: 9.12 Scorer Functions
9.12.25 Gi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ ,
9.12.26 Gi ( z ) 1 π z 2 k = 0 ( 3 k + 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
9.12.27 Hi ( z ) 1 π z k = 0 ( 3 k ) ! k ! ( 3 z 3 ) k , | ph ( z ) | 2 3 π δ ,
9.12.28 Hi ( z ) 1 π z 2 k = 0 ( 3 k + 1 ) ! k ! ( 3 z 3 ) k , | ph ( z ) | 2 3 π δ .