About the Project

sine transform

AdvancedHelp

(0.003 seconds)

11—20 of 56 matching pages

11: 20.10 Integrals
§20.10(i) Mellin Transforms with respect to the Lattice Parameter
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
§20.10(ii) Laplace Transforms with respect to the Lattice Parameter
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
12: 19.8 Quadratic Transformations
We consider only the descending Gauss transformation because its (ascending) inverse moves F ( ϕ , k ) closer to the singularity at k = sin ϕ = 1 . …
13: 2.5 Mellin Transform Methods
2.5.9 f ( 1 z ) = π sin ( π z ) , 0 < z < 1 ,
2.5.10 h ( z ) = 2 z 1 Γ ( ν + 1 2 z ) Γ 2 ( 1 1 2 z ) Γ ( 1 + ν 1 2 z ) Γ ( z ) π sin ( π z ) , 2 ν < z < 1 .
14: 19.25 Relations to Other Functions
The transformations in §19.7(ii) result from the symmetry and homogeneity of functions on the right-hand sides of (19.25.5), (19.25.7), and (19.25.14). …then the five nontrivial permutations of x , y , z that leave R F invariant change k 2 ( = ( z y ) / ( z x ) ) into 1 / k 2 , k 2 , 1 / k 2 , k 2 / k 2 , k 2 / k 2 , and sin ϕ ( = ( z x ) / z ) into k sin ϕ , i tan ϕ , i k tan ϕ , ( k sin ϕ ) / 1 k 2 sin 2 ϕ , i k sin ϕ / 1 k 2 sin 2 ϕ . Thus the five permutations induce five transformations of Legendre’s integrals (and also of the Jacobian elliptic functions). …
ϕ = arccos x / z = arcsin ( z x ) / z ,
15: 15.9 Relations to Other Functions
The Jacobi transform is defined as
15.9.12 f ~ ( λ ) = 0 f ( t ) ϕ λ ( α , β ) ( t ) ( 2 sinh t ) 2 α + 1 ( 2 cosh t ) 2 β + 1 d t ,
with inverse … … Any hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. …
16: 1.17 Integral and Series Representations of the Dirac Delta
Sine and Cosine Functions
1.17.12_2 δ ( x a ) = 2 π 0 sin ( x t ) sin ( a t ) d t , x > 0 , a > 0 .
Integral representation (1.17.12_1), (1.17.12_2) is the equivalent of the transform pairs, (1.14.9) & (1.14.11), (1.14.10) & (1.14.12), respectively. …
1.17.20 δ n ( x a ) = 1 2 π k = n n e i k ( x a ) ( = sin ( ( n + 1 2 ) ( x a ) ) 2 π sin ( 1 2 ( x a ) ) ) ,
17: 10.43 Integrals
10.43.30 f ( y ) = 2 y π 2 sinh ( π y ) 0 g ( x ) x K i y ( x ) d x .
18: 24.7 Integral Representations
24.7.11 B n ( x ) = 1 2 π i c i c + i ( x + t ) n ( π sin ( π t ) ) 2 d t , 0 < c < 1 .
19: 13.8 Asymptotic Approximations for Large Parameters
When the foregoing results are combined with Kummer’s transformation (13.2.39), an approximation is obtained for the case when | b | is large, and | b a | and | z | are bounded. … where w = arccosh ( 1 + ( 2 a ) 1 x ) , and β = ( w + sinh w ) / 2 . …For the case b > 1 the transformation (13.2.40) can be used. …
13.8.10 U ( a , b , x ) = Γ ( 1 2 b a + 1 2 ) e 1 2 x x 1 2 1 2 b ( cos ( a π ) J b 1 ( 2 x ( b 2 a ) ) sin ( a π ) Y b 1 ( 2 x ( b 2 a ) ) + env Y b 1 ( 2 x ( b 2 a ) ) O ( | a | 1 2 ) ) ,
where C ν ( a , ζ ) = cos ( π a ) J ν ( ζ ) + sin ( π a ) Y ν ( ζ ) and …
20: 10.32 Integral Representations
10.32.16 I μ ( x ) K ν ( x ) = 0 J μ ± ν ( 2 x sinh t ) e ( μ ± ν ) t d t , ( μ ν ) > 1 2 , ( μ ± ν ) > 1 , x > 0 .