About the Project

scaling of variables and parameters

AdvancedHelp

(0.003 seconds)

11—20 of 27 matching pages

11: 15.8 Transformations of Variable
β–Ί
15.8.1 𝐅 ⁑ ( a , b c ; z ) = ( 1 z ) a ⁒ 𝐅 ⁑ ( a , c b c ; z z 1 ) = ( 1 z ) b ⁒ 𝐅 ⁑ ( c a , b c ; z z 1 ) = ( 1 z ) c a b ⁒ 𝐅 ⁑ ( c a , c b c ; z ) , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.2 sin ⁑ ( Ο€ ⁒ ( b a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( z ) a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c a ) ⁒ 𝐅 ⁑ ( a , a c + 1 a b + 1 ; 1 z ) ( z ) b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ 𝐅 ⁑ ( b , b c + 1 b a + 1 ; 1 z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
15.8.3 sin ⁑ ( Ο€ ⁒ ( b a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( 1 z ) a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c a ) ⁒ 𝐅 ⁑ ( a , c b a b + 1 ; 1 1 z ) ( 1 z ) b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ 𝐅 ⁑ ( b , c a b a + 1 ; 1 1 z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
15.8.4 sin ⁑ ( Ο€ ⁒ ( c a b ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = 1 Ξ“ ⁑ ( c a ) ⁒ Ξ“ ⁑ ( c b ) ⁒ 𝐅 ⁑ ( a , b a + b c + 1 ; 1 z ) ( 1 z ) c a b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ 𝐅 ⁑ ( c a , c b c a b + 1 ; 1 z ) , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.12 𝐅 ⁑ ( a , b ; a + b m ; z ) = ( 1 z ) m ⁒ 𝐅 ⁑ ( a ~ , b ~ ; a ~ + b ~ + m ; z ) , a ~ = a m , b ~ = b m .
12: 36.6 Scaling Relations
§36.6 Scaling Relations
β–Ί
Diffraction Catastrophe Scaling
β–Ί
Indices for k -Scaling of Magnitude of Ξ¨ K or Ξ¨ ( U ) (Singularity Index)
β–Ί
Indices for k -Scaling of Coordinates x m
β–Ί
Indices for k -Scaling of 𝐱 Hypervolume
13: 15.9 Relations to Other Functions
β–Ί
15.9.17 𝐅 ⁑ ( a , a + 1 2 c ; z ) = 2 c 1 ⁒ z ( 1 c ) / 2 ⁒ ( 1 z ) a + ( ( c 1 ) / 2 ) ⁒ P 2 ⁒ a c 1 c ⁑ ( 1 1 z ) , | ph ⁑ z | < Ο€ and | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.9.18 𝐅 ⁑ ( a , b a + b + 1 2 ; z ) = 2 a + b ( 1 / 2 ) ⁒ ( z ) ( a b + ( 1 / 2 ) ) / 2 ⁒ P a b ( 1 / 2 ) a b + ( 1 / 2 ) ⁑ ( 1 z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
15.9.19 𝐅 ⁑ ( a , b a b + 1 ; z ) = z ( b a ) / 2 ⁒ ( 1 z ) b ⁒ P b b a ⁑ ( 1 + z 1 z ) , | ph ⁑ z | < Ο€ and | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.9.20 𝐅 ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( z ⁒ ( 1 z ) ) ( 1 a b ) / 4 ⁒ P ( a b 1 ) / 2 ( 1 a b ) / 2 ⁑ ( 1 2 ⁒ z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
14: 10.39 Relations to Other Functions
β–Ί
10.39.10 I Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ lim 𝐅 ⁑ ( Ξ» , ΞΌ ; Ξ½ + 1 ; z 2 / ( 4 ⁒ Ξ» ⁒ ΞΌ ) ) ,
15: 16.2 Definition and Analytic Properties
β–Ί
16.2.5 𝐅 q p ⁑ ( 𝐚 ; 𝐛 ; z ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) / ( Ξ“ ⁑ ( b 1 ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q ) ) = k = 0 ( a 1 ) k ⁒ β‹― ⁒ ( a p ) k Ξ“ ⁑ ( b 1 + k ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q + k ) ⁒ z k k ! ;
16: 21.9 Integrable Equations
β–ΊHere x and y are spatial variables, t is time, and u ⁑ ( x , y , t ) is the elevation of the surface wave. All quantities are made dimensionless by a suitable scaling transformation. …These parameters, including 𝛀 , are not free: they are determined by a compact, connected Riemann surface (Krichever (1976)), or alternatively by an appropriate initial condition u ⁑ ( x , y , 0 ) (Deconinck and Segur (1998)). …
17: 10.16 Relations to Other Functions
β–Ί
10.16.10 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ lim 𝐅 ⁑ ( Ξ» , ΞΌ ; Ξ½ + 1 ; z 2 / ( 4 ⁒ Ξ» ⁒ ΞΌ ) ) ,
18: 13.8 Asymptotic Approximations for Large Parameters
§13.8 Asymptotic Approximations for Large Parameters
β–Ί
§13.8(ii) Large b and z , Fixed a and b / z
β–Ί
§13.8(iii) Large a
β–Ίβ–Ίwhere Ξ“ ⁑ ( a ) is the scaled gamma function defined in (5.11.3). …
19: 10.22 Integrals
β–Ί
10.22.49 0 t ΞΌ 1 ⁒ e a ⁒ t ⁒ J Ξ½ ⁑ ( b ⁒ t ) ⁒ d t = ( 1 2 ⁒ b ) Ξ½ a ΞΌ + Ξ½ ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ⁒ 𝐅 ⁑ ( ΞΌ + Ξ½ 2 , ΞΌ + Ξ½ + 1 2 ; Ξ½ + 1 ; b 2 a 2 ) , ⁑ ( ΞΌ + Ξ½ ) > 0 , ⁑ ( a ± i ⁒ b ) > 0 ,
β–Ί
10.22.50 0 t ΞΌ 1 ⁒ e a ⁒ t ⁒ Y Ξ½ ⁑ ( b ⁒ t ) ⁒ d t = cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( 1 2 ⁒ b ) Ξ½ ⁒ Ξ“ ⁑ ( ΞΌ + Ξ½ ) ( a 2 + b 2 ) 1 2 ⁒ ( ΞΌ + Ξ½ ) ⁒ 𝐅 ⁑ ( ΞΌ + Ξ½ 2 , 1 ΞΌ + Ξ½ 2 ; Ξ½ + 1 ; b 2 a 2 + b 2 ) csc ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( 1 2 ⁒ b ) Ξ½ ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ( a 2 + b 2 ) 1 2 ⁒ ( ΞΌ Ξ½ ) ⁒ 𝐅 ⁑ ( ΞΌ Ξ½ 2 , 1 ΞΌ Ξ½ 2 ; 1 Ξ½ ; b 2 a 2 + b 2 ) , ⁑ ΞΌ > | ⁑ Ξ½ | , ⁑ ( a ± i ⁒ b ) > 0 .
β–ΊFor the hypergeometric function 𝐅 see §15.2(i). … β–Ί
10.22.56 0 J ΞΌ ⁑ ( a ⁒ t ) ⁒ J Ξ½ ⁑ ( b ⁒ t ) t Ξ» ⁒ d t = a ΞΌ ⁒ Ξ“ ⁑ ( 1 2 ⁒ Ξ½ + 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ» + 1 2 ) 2 Ξ» ⁒ b ΞΌ Ξ» + 1 ⁒ Ξ“ ⁑ ( 1 2 ⁒ Ξ½ 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ» + 1 2 ) ⁒ 𝐅 ⁑ ( 1 2 ⁒ ( ΞΌ + Ξ½ Ξ» + 1 ) , 1 2 ⁒ ( ΞΌ Ξ½ Ξ» + 1 ) ; ΞΌ + 1 ; a 2 b 2 ) , 0 < a < b , ⁑ ( ΞΌ + Ξ½ + 1 ) > ⁑ Ξ» > 1 .
β–Ί
10.22.58 0 J Ξ½ ⁑ ( a ⁒ t ) ⁒ J Ξ½ ⁑ ( b ⁒ t ) t Ξ» ⁒ d t = ( a ⁒ b ) Ξ½ ⁒ Ξ“ ⁑ ( Ξ½ 1 2 ⁒ Ξ» + 1 2 ) 2 Ξ» ⁒ ( a 2 + b 2 ) Ξ½ 1 2 ⁒ Ξ» + 1 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ Ξ» + 1 2 ) ⁒ 𝐅 ⁑ ( 2 ⁒ Ξ½ + 1 Ξ» 4 , 2 ⁒ Ξ½ + 3 Ξ» 4 ; Ξ½ + 1 ; 4 ⁒ a 2 ⁒ b 2 ( a 2 + b 2 ) 2 ) , a b , ⁑ ( 2 ⁒ Ξ½ + 1 ) > ⁑ Ξ» > 1 .
20: 10.41 Asymptotic Expansions for Large Order
β–Ί β–Ί β–Ί
§10.41(ii) Uniform Expansions for Real Variable
β–Ί
§10.41(iii) Uniform Expansions for Complex Variable
β–ΊThis is because A k ⁑ ( ΞΆ ) and ΞΆ 1 2 ⁒ B k ⁑ ( ΞΆ ) , k = 0 , 1 , , do not form an asymptotic scale2.1(v)) as ΞΆ + ; see Olver (1997b, pp. 422–425). …