About the Project

scaled gamma function

AdvancedHelp

(0.008 seconds)

31—40 of 40 matching pages

31: 14.13 Trigonometric Expansions
§14.13 Trigonometric Expansions
14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
14.13.3 𝖯 n ( cos θ ) = 2 2 n + 2 ( n ! ) 2 π ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) sin ( ( n + 2 k + 1 ) θ ) ,
14.13.4 𝖰 n ( cos θ ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) cos ( ( n + 2 k + 1 ) θ ) ,
32: 13.16 Integral Representations
§13.16(ii) Contour Integrals
where the contour of integration separates the poles of Γ ( t κ ) from those of Γ ( 1 2 + μ t ) . … where the contour of integration separates the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) from those of Γ ( κ t ) . …where the contour of integration passes all the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) on the right-hand side.
33: 3.5 Quadrature
The given quantities γ n follow from (18.2.5), (18.2.7), Table 18.3.1, and the relation γ n = h n / k n 2 . … The p n ( x ) are the monic Legendre polynomials, that is, the polynomials P n ( x ) 18.3) scaled so that the coefficient of the highest power of x in their explicit forms is unity. … In the case of Chebyshev weight functions w ( x ) = ( 1 x ) α ( 1 + x ) β on [ 1 , 1 ] , with | α | = | β | = 1 2 , the nodes x k , weights w k , and error constant γ n , are as follows: … Furthermore, h 0 = 2 α + β + 1 Γ ( α + 1 ) Γ ( β + 1 ) / Γ ( α + β + 2 ) . …
Example
34: 14.15 Uniform Asymptotic Approximations
§14.15 Uniform Asymptotic Approximations
§14.15(i) Large μ , Fixed ν
In other words, the convergent hypergeometric series expansions of 𝖯 ν μ ( ± x ) are also generalized (and uniform) asymptotic expansions as μ , with scale 1 / Γ ( j + 1 + μ ) , j = 0 , 1 , 2 , ; compare §2.1(v). … (The inverse hyperbolic functions again take their principal values.) …
35: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • J. W. Wrench (1968) Concerning two series for the gamma function. Math. Comp. 22 (103), pp. 617–626.
  • T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch (1976) Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B 13, pp. 316–374.
  • 36: Bibliography G
  • B. Gabutti and G. Allasia (2008) Evaluation of q -gamma function and q -analogues by iterative algorithms. Numer. Algorithms 49 (1-4), pp. 159–168.
  • W. Gautschi (1979a) Algorithm 542: Incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 482–489.
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • W. Gautschi (1979b) A computational procedure for incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 466–481.
  • 37: 15.12 Asymptotic Approximations
    §15.12(i) Large Variable
    For the asymptotic behavior of 𝐅 ( a , b ; c ; z ) as z with a , b , c fixed, combine (15.2.2) with (15.8.2) or (15.8.8).
    §15.12(ii) Large c
    Also, … For other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
    38: Philip J. Davis
    After being asked by Milton Abramowitz to work on the project, he chose to write the Chapter “Gamma Function and Related Functions. … Olver had been recruited to write the Chapter “Bessel Functions of Integer Order” for A&S by Milton Abramowitz, who passed away suddenly in 1958. … DLMF users can rotate, rescale, zoom and otherwise explore mathematical function surfaces. The surface color map can be changed from height-based to phase-based for complex valued functions, and density plots can be generated through strategic scaling. Moreover, a cutting plane feature allows users to track curves of intersection produced as a moving plane cuts through the function surface. …
    39: 18.39 Applications in the Physical Sciences
    The spectrum is mixed as in §1.18(viii), with the discrete eigenvalues given by (18.39.18) and the continuous eigenvalues by ( α γ ) 2 / ( 2 m ) ( γ 0 ) with corresponding eigenfunctions e α ( x x e ) / 2 W λ , i γ ( 2 λ e α ( x x e ) ) expressed in terms of Whittaker functions (13.14.3). The corresponding eigenfunction transform is a generalization of the Kontorovich–Lebedev transform §10.43(v), see Faraut (1982, §IV). … The fact that both the eigenvalues of (18.39.31) and the scaling of the r co-ordinate in the eigenfunctions, (18.39.30), depend on the sum p + l + 1 leads to the substitution …
    c) Spherical Radial Coulomb Wave Functions
    where s is a real, positive, scaling factor, and l a non-negative integer. …
    40: Bibliography F
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2005) Incomplete gamma functions for large values of their variables. Adv. in Appl. Math. 34 (3), pp. 467–485.
  • C. Ferreira and J. L. López (2001) An asymptotic expansion of the double gamma function. J. Approx. Theory 111 (2), pp. 298–314.
  • J. L. Fields (1966) A note on the asymptotic expansion of a ratio of gamma functions. Proc. Edinburgh Math. Soc. (2) 15, pp. 43–45.
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.