About the Project

rotation matrices

AdvancedHelp

(0.002 seconds)

21—30 of 70 matching pages

21: 35.4 Partitions and Zonal Polynomials
22: 22.6 Elementary Identities
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
23: Bibliography T
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • W. J. Thompson (1994) Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • 24: 1.3 Determinants, Linear Operators, and Spectral Expansions
    Determinants of Upper/Lower Triangular and Diagonal Matrices
    §1.3(iv) Matrices as Linear Operators
    Real symmetric ( 𝐀 = 𝐀 T ) and Hermitian ( 𝐀 = 𝐀 H ) matrices are self-adjoint operators on 𝐄 n . … For Hermitian matrices 𝐒 is unitary, and for real symmetric matrices 𝐒 is an orthogonal transformation. …
    25: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    35.6.2 Ψ ( a ; b ; 𝐓 ) = 1 Γ m ( a ) 𝛀 etr ( 𝐓 𝐗 ) | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 + 𝐗 | b a 1 2 ( m + 1 ) d 𝐗 , ( a ) > 1 2 ( m 1 ) , 𝐓 𝛀 .
    35.6.6 B m ( b 1 , b 2 ) | 𝐓 | b 1 + b 2 1 2 ( m + 1 ) F 1 1 ( a 1 + a 2 b 1 + b 2 ; 𝐓 ) = 𝟎 < 𝐗 < 𝐓 | 𝐗 | b 1 1 2 ( m + 1 ) F 1 1 ( a 1 b 1 ; 𝐗 ) | 𝐓 𝐗 | b 2 1 2 ( m + 1 ) F 1 1 ( a 2 b 2 ; 𝐓 𝐗 ) d 𝐗 , ( b 1 ) , ( b 2 ) > 1 2 ( m 1 ) .
    35.6.8 𝛀 | 𝐓 | c 1 2 ( m + 1 ) Ψ ( a ; b ; 𝐓 ) d 𝐓 = Γ m ( c ) Γ m ( a c ) Γ m ( c b + 1 2 ( m + 1 ) ) Γ m ( a ) Γ m ( a b + 1 2 ( m + 1 ) ) , ( a ) > ( c ) + 1 2 ( m 1 ) > m 1 , ( c b ) > 1 .
    26: 19.31 Probability Distributions
    More generally, let 𝐀 ( = [ a r , s ] ) and 𝐁 ( = [ b r , s ] ) be real positive-definite matrices with n rows and n columns, and let λ 1 , , λ n be the eigenvalues of 𝐀 𝐁 1 . …
    27: 28.34 Methods of Computation
  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • 28: 23.22 Methods of Computation
  • (b)

    If d = 0 , then

    23.22.2 2 ω 1 = 2 i ω 3 = ( Γ ( 1 4 ) ) 2 2 π c 1 / 4 .

    There are 4 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 4 rotations of a square lattice. The lemniscatic case occurs when c > 0 and ω 1 > 0 .

  • (c)

    If c = 0 , then

    23.22.3 2 ω 1 = 2 e π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 .

    There are 6 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and ω 1 > 0 .

  • 29: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    30: Bibliography F
  • P. J. Forrester and N. S. Witte (2001) Application of the τ -function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Comm. Math. Phys. 219 (2), pp. 357–398.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.