About the Project
NIST

representation as double Laplace transform

AdvancedHelp

(0.002 seconds)

7 matching pages

1: 1.14 Integral Transforms
Laplace Transform
2: 16.15 Integral Representations and Integrals
§16.15 Integral Representations and Integrals
For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). These representations can be used to derive analytic continuations of the Appell functions, including convergent series expansions for large x , large y , or both. For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
3: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • P. N. Shivakumar and J. Xue (1999) On the double points of a Mathieu equation. J. Comput. Appl. Math. 107 (1), pp. 111–125.
  • 4: Bibliography B
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • J. L. Burchnall and T. W. Chaundy (1940) Expansions of Appell’s double hypergeometric functions. Quart. J. Math., Oxford Ser. 11, pp. 249–270.
  • R. W. Butler and A. T. A. Wood (2002) Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (4), pp. 1155–1177.
  • R. W. Butler and A. T. A. Wood (2003) Laplace approximation for Bessel functions of matrix argument. J. Comput. Appl. Math. 155 (2), pp. 359–382.
  • 5: Bibliography G
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • K. I. Gross and R. A. Kunze (1976) Bessel functions and representation theory. I. J. Functional Analysis 22 (2), pp. 73–105.
  • E. Grosswald (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.
  • 6: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • T. Weider (1999) Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Trans. Math. Software 25 (2), pp. 240–250.
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 7: 10.22 Integrals
    Other Double Products
    See also §1.17(ii) for an integral representation of the Dirac delta in terms of a product of Bessel functions. …
    §10.22(v) Hankel Transform
    The Hankel transform (or Bessel transform) of a function f ( x ) is defined as … For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972). …