About the Project

relations to Bessel functions of matrix argument

AdvancedHelp

(0.006 seconds)

11—16 of 16 matching pages

11: Bibliography K
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • P. Koev and A. Edelman (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 (254), pp. 833–846.
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978) Hypergeometric functions of 2 × 2 matrix argument are expressible in terms of Appel’s functions F 4 . Proc. Amer. Math. Soc. 70 (1), pp. 39–42.
  • P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998) ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys. Comm. 113 (2-3), pp. 220–238.
  • 12: Bibliography
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 13: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • A. B. Olde Daalhuis (1994) Asymptotic expansions for q -gamma, q -exponential, and q -Bessel functions. J. Math. Anal. Appl. 186 (3), pp. 896–913.
  • I. Olkin (1959) A class of integral identities with matrix argument. Duke Math. J. 26 (2), pp. 207–213.
  • 14: Errata
  • Equation (35.7.3)

    Originally the matrix in the argument of the Gaussian hypergeometric function of matrix argument F 1 2 was written with round brackets. This matrix has been rewritten with square brackets to be consistent with the rest of the DLMF.

  • Equations (33.11.2)–(33.11.7)

    The arguments of some of the functions in (33.11.2)–(33.11.7) were included to improve clarity of the presentation.

  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.

  • Equations (9.7.3), (9.7.4)

    Originally the function χ was presented with argument given by a positive integer n . It has now been clarified to be valid for argument given by a positive real number x .

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • 15: Bibliography M
  • S. Makinouchi (1966) Zeros of Bessel functions J ν ( x ) and Y ν ( x ) accurate to twenty-nine significant digits. Technology Reports of the Osaka University 16 (685), pp. 1–44.
  • J. McMahon (1894) On the roots of the Bessel and certain related functions. Ann. of Math. 9 (1-6), pp. 23–30.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.
  • M. E. Muldoon (1981) The variation with respect to order of zeros of Bessel functions. Rend. Sem. Mat. Univ. Politec. Torino 39 (2), pp. 15–25.
  • 16: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • J. B. Campbell (1979) Bessel functions J ν ( x ) and Y ν ( x ) of real order and real argument. Comput. Phys. Comm. 18 (1), pp. 133–142.
  • J. B. Campbell (1981) Bessel functions I ν ( x ) and K ν ( x ) of real order and complex argument. Comput. Phys. Comm. 24 (1), pp. 97–105.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • J. P. Coleman (1980) A Fortran subroutine for the Bessel function J n ( x ) of order 0 to 10 . Comput. Phys. Comm. 21 (1), pp. 109–118.