About the Project

relation to modified Bessel functions

AdvancedHelp

(0.024 seconds)

11—20 of 41 matching pages

11: 18.15 Asymptotic Approximations
where J ν ( z ) is the Bessel function10.2(ii)), and … These expansions are in terms of Bessel functions and modified Bessel functions, respectively. …
In Terms of Bessel Functions
Here J ν ( z ) denotes the Bessel function10.2(ii)), env J ν ( z ) denotes its envelope (§2.8(iv)), and δ is again an arbitrary small positive constant. … With μ = 2 n + 1 the expansions in Chapter 12 are for the parabolic cylinder function U ( 1 2 μ 2 , μ t 2 ) , which is related to the Hermite polynomials via …
12: 10.51 Recurrence Relations and Derivatives
§10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
§10.51(ii) Modified Functions
Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …
13: Bibliography G
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • W. Gautschi and J. Slavik (1978) On the computation of modified Bessel function ratios. Math. Comp. 32 (143), pp. 865–875.
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • A. Gervois and H. Navelet (1986a) Some integrals involving three modified Bessel functions. I. J. Math. Phys. 27 (3), pp. 682–687.
  • E. T. Goodwin (1949a) Recurrence relations for cross-products of Bessel functions. Quart. J. Mech. Appl. Math. 2 (1), pp. 72–74.
  • 14: 11.4 Basic Properties
    §11.4(ii) Inequalities
    §11.4(iv) Expansions in Series of Bessel Functions
    §11.4(v) Recurrence Relations and Derivatives
    §11.4(vi) Derivatives with Respect to Order
    §11.4(vii) Zeros
    15: 10.9 Integral Representations
    Poisson’s and Related Integrals
    Schläfli’s and Related Integrals
    Mehler–Sonine and Related Integrals
    For the function I ν see §10.25(ii). … For the function K 0 see §10.25(ii). …
    16: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.
  • K. H. Burrell (1974) Algorithm 484: Evaluation of the modified Bessel functions K0(Z) and K1(Z) for complex arguments. Comm. ACM 17 (9), pp. 524–526.
  • 17: 13.8 Asymptotic Approximations for Large Parameters
    For the parabolic cylinder function U see §12.2, and for an extension to an asymptotic expansion see Temme (1978). … For an extension to an asymptotic expansion complete with error bounds see Temme (1990b), and for related results see §13.21(i). … uniformly with respect to bounded positive values of x in each case. … where C ν ( a , ζ ) = cos ( π a ) J ν ( ζ ) + sin ( π a ) Y ν ( ζ ) and … For generalizations in which z is also allowed to be large see Temme and Veling (2022).
    18: 10.29 Recurrence Relations and Derivatives
    §10.29 Recurrence Relations and Derivatives
    §10.29(i) Recurrence Relations
    With 𝒵 ν ( z ) defined as in §10.25(ii), … For results on modified quotients of the form z 𝒵 ν ± 1 ( z ) / 𝒵 ν ( z ) see Onoe (1955) and Onoe (1956).
    §10.29(ii) Derivatives
    19: 11.10 Anger–Weber Functions
    §11.10 Anger–Weber Functions
    The Anger and Weber functions satisfy the inhomogeneous Bessel differential equation …
    §11.10(vi) Relations to Other Functions
    §11.10(ix) Recurrence Relations and Derivatives
    20: Bibliography S
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • K. M. Siegel (1953) An inequality involving Bessel functions of argument nearly equal to their order. Proc. Amer. Math. Soc. 4 (6), pp. 858–859.
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.