About the Project

relation%20to%20parabolic%20cylinder%20functions

AdvancedHelp

(0.009 seconds)

9 matching pages

1: Bibliography C
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 2: Software Index
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • Guide to Available Mathematical Software

    A cross index of mathematical software in use at NIST.

  • 3: 28.8 Asymptotic Expansions for Large q
    For recurrence relations for the coefficients in these expansions see Frenkel and Portugal (2001, §3). … For recurrence relations for the coefficients in these expansions see Frenkel and Portugal (2001, §4 and §5). … Then as h + The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. … For related results see Langer (1934) and Sharples (1967, 1971). …
    4: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • 5: Bibliography F
  • M. Faierman (1992) Generalized parabolic cylinder functions. Asymptotic Anal. 5 (6), pp. 517–531.
  • FDLIBM (free C library)
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • A. Fletcher (1948) Guide to tables of elliptic functions. Math. Tables and Other Aids to Computation 3 (24), pp. 229–281.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • 6: Bibliography M
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • J. C. P. Miller (Ed.) (1955) Tables of Weber Parabolic Cylinder Functions. Her Majesty’s Stationery Office, London.
  • W. Miller (1974) Lie theory and separation of variables. I: Parabolic cylinder coordinates. SIAM J. Math. Anal. 5 (4), pp. 626–643.
  • K. H. Müller (1988) Elastodynamics in parabolic cylinders. Z. Angew. Math. Phys. 39 (5), pp. 748–752.
  • J. Murzewski and A. Sowa (1972) Tables of the functions of the parabolic cylinder for negative integer parameters. Zastos. Mat. 13, pp. 261–273.
  • 7: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • O. Vallée and M. Soares (2010) Airy Functions and Applications to Physics. Second edition, Imperial College Press, London.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 8: Bibliography O
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • M. Onoe (1955) Formulae and Tables, The Modified Quotients of Cylinder Functions. Technical report Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
  • M. Onoe (1956) Modified quotients of cylinder functions. Math. Tables Aids Comput. 10, pp. 27–28.
  • R. H. Ott (1985) Scattering by a parabolic cylinder—a uniform asymptotic expansion. J. Math. Phys. 26 (4), pp. 854–860.
  • 9: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10(vi) Modifications of Expansions in Elementary Functions
    Modified Expansions