About the Project

relation%20to%20infinite%20partial%20fractions

AdvancedHelp

(0.004 seconds)

11—20 of 910 matching pages

11: 6.16 Mathematical Applications
The n th partial sum is given by …Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … Hence if x = π / ( 2 n ) and n , then the limiting value of S n ( x ) overshoots 1 4 π by approximately 18%. … If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …where π ( x ) is the number of primes less than or equal to x . …
12: Tom M. Apostol
Apostol was born on August 20, 1923. … He was also a coauthor of three textbooks written to accompany the physics telecourse The Mechanical Universe …and Beyond. … In 1998, the Mathematical Association of America (MAA) awarded him the annual Trevor Evans Award, presented to authors of an exceptional article that is accessible to undergraduates, for his piece entitled “What Is the Most Surprising Result in Mathematics?” (Answer: the prime number theorem). … Ford Award, given to recognize authors of articles of expository excellence. …
  • 13: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • 14: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 15: 26.3 Lattice Paths: Binomial Coefficients
    §26.3(i) Definitions
    ( m n ) is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    §26.3(iii) Recurrence Relations
    16: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • 17: 26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    It counts the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x . …
    §26.5(iii) Recurrence Relations
    26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
    18: 8.17 Incomplete Beta Functions
    However, in the case of §8.17 it is straightforward to continue most results analytically to other real values of a , b , and x , and also to complex values. …
    §8.17(ii) Hypergeometric Representations
    §8.17(iv) Recurrence Relations
    For sums of infinite series whose terms involve the incomplete beta function see Hansen (1975, §62).
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    19: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
    25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
    For related results see Basu and Apostol (2000).
    20: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    §26.4(i) Definitions
    It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … (The empty set is considered to have one permutation consisting of no cycles.) …
    §26.4(iii) Recurrence Relation