About the Project

relation%20to%20Bernoulli%20numbers

AdvancedHelp

(0.005 seconds)

1—10 of 13 matching pages

1: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
For related results see Basu and Apostol (2000).
2: Bibliography
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • H. Alzer (2000) Sharp bounds for the Bernoulli numbers. Arch. Math. (Basel) 74 (3), pp. 207–211.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • 3: Software Index
  • Research Software.

    This is software of narrow scope developed as a byproduct of a research project and subsequently made available at no cost to the public. The software is often meant to demonstrate new numerical methods or software engineering strategies which were the subject of a research project. When developed, the software typically contains capabilities unavailable elsewhere. While the software may be quite capable, it is typically not professionally packaged and its use may require some expertise. The software is typically provided as source code or via a web-based service, and no support is provided.

  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Software Associated with Books.

    An increasing number of published books have included digital media containing software described in the book. Often, the collection of software covers a fairly broad area. Such software is typically developed by the book author. While it is not professionally packaged, it often provides a useful tool for readers to experiment with the concepts discussed in the book. The software itself is typically not formally supported by its authors.

  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • Guide to Available Mathematical Software

    A cross index of mathematical software in use at NIST.

  • 4: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • K. Ireland and M. Rosen (1990) A Classical Introduction to Modern Number Theory. 2nd edition, Springer-Verlag, New York.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • 5: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • L. Carlitz (1958) Expansions of q -Bernoulli numbers. Duke Math. J. 25 (2), pp. 355–364.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • 6: 26.14 Permutations: Order Notation
    The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. It is also equal to the number of permutations in 𝔖 n with exactly k + 1 weak excedances. …
    §26.14(iii) Identities
    In this subsection S ( n , k ) is again the Stirling number of the second kind (§26.8), and B m is the m th Bernoulli number24.2(i)). …
    7: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • 8: Bibliography G
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • 9: 25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case: … For B ~ n ( x ) see §24.2(iii). … For other series expansions similar to (25.11.10) see Coffey (2008). … where H n are the harmonic numbers: … When a = 1 , (25.11.35) reduces to (25.2.3). …
    10: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. Wimp (1984) Computation with Recurrence Relations. Pitman, Boston, MA.