About the Project

reflection%20properties%20in%20q

AdvancedHelp

(0.003 seconds)

11—20 of 948 matching pages

11: 26.9 Integer Partitions: Restricted Number and Part Size
Unrestricted partitions are covered in §27.14. … A useful representation for a partition is the Ferrers graph in which the integers in the partition are each represented by a row of dots. An example is provided in Figure 26.9.1. … The conjugate partition is obtained by reflecting the Ferrers graph across the main diagonal or, equivalently, by representing each integer by a column of dots. … In what follows …
12: 8 Incomplete Gamma and Related
Functions
13: 28 Mathieu Functions and Hill’s Equation
14: 36.5 Stokes Sets
In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. … in which … One of the sheets is symmetrical under reflection in the plane y = 0 , and is given by … in which … The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
15: Errata
  • Section 3.1

    InIEEE Standard (in §3.1(i)), the description was modified to reflect the most recent IEEE 754-2019 Floating-Point Arithmetic Standard IEEE (2019). In the new standard, single, double and quad floating-point precisions are replaced with new standard names of binary32, binary64 and binary128. Figure 3.1.1 has been expanded to include the binary128 floating-point memory positions and the caption has been updated using the terminology of the 2019 standard. A sentence at the end of Subsection 3.1(ii) has been added referring readers to the IEEE Standards for Interval Arithmetic IEEE (2015, 2018).

    Suggested by Nicola Torracca.

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • References

    An addition was made to the Software Index to reflect a multiple precision (MP) package written in C++ which uses a variety of different MP interfaces. See Kormanyos (2011).

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 16: 10.61 Definitions and Basic Properties
    §10.61 Definitions and Basic Properties
    Most properties of ber ν x , bei ν x , ker ν x , and kei ν x follow straightforwardly from the above definitions and results given in preceding sections of this chapter. …
    §10.61(iii) Reflection Formulas for Arguments
    In particular, …
    §10.61(iv) Reflection Formulas for Orders
    17: 23 Weierstrass Elliptic and Modular
    Functions
    18: Gergő Nemes
     1988 in Szeged, Hungary) is a Research Fellow at the Alfréd Rényi Institute of Mathematics in Budapest, Hungary. …  in mathematics (with distinction) and a M. …in mathematics (with honours) from Loránd Eötvös University, Budapest, Hungary and a Ph. … in mathematics from Central European University in Budapest, Hungary. … As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    19: Wolter Groenevelt
     1976 in Leidschendam, the Netherlands) is an Associate Professor at the Delft University of Technology in Delft, The Netherlands. …  in mathematics at the Delft University of Technology in 2004. Groenevelt’s research interests is in special functions and orthogonal polynomials and their relations with representation theory and interacting particle systems. As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. In July 2023, Groenevelt was named Contributing Developer of the NIST Digital Library of Mathematical Functions.
    20: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.