About the Project

reduced%20Planck%20constant

AdvancedHelp

(0.003 seconds)

1—10 of 514 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
14.30.11 L 2 Y l , m = 2 l ( l + 1 ) Y l , m , l = 0 , 1 , 2 , ,
14.30.11_5 L z Y l , m = m Y l , m , m = l , 1 + 1 , , 0 , , l 1 , l ,
where is the reduced Planck’s constant. …
14.30.12 L 2 = 2 ( 1 sin θ θ ( sin θ θ ) + 1 sin 2 θ 2 ϕ 2 ) ,
14.30.13 L z = i ϕ ;
2: 18.39 Applications in the Physical Sciences
where x is a spatial coordinate, m the mass of the particle with potential energy V ( x ) , = h / ( 2 π ) is the reduced Planck’s constant, and ( a , b ) a finite or infinite interval. Here the term 2 2 m 2 x 2 represents the quantum kinetic energy of a single particle of mass m , and V ( x ) its potential energy. … and = k = m = 1 , has eigenfunctions … , = m e = e 2 = 4 π ϵ 0 = 1 , Mohr and Taylor (2005, Table XXX, p. 71), where the relationship of a . u . to SI units is spelled out. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
3: 20 Theta Functions
Chapter 20 Theta Functions
4: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(i) Schrödinger Equation
With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by … For Z 1 Z 2 = 1 and m = m e , the electron mass, the scaling factors in (33.22.5) reduce to the Bohr radius, a 0 = / ( m e c α ) , and to a multiple of the Rydberg constant, R = m e c α 2 / ( 2 ) . …
5: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … Such a set is a reduced residue system modulo n . …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
6: 15.13 Zeros
where S = sign ( Γ ( a ) Γ ( b ) Γ ( c a ) Γ ( c b ) ) . … If a , b , c , c a , or c b { 0 , 1 , 2 , } , then F ( a , b ; c ; z ) is not defined, or reduces to a polynomial, or reduces to ( 1 z ) c a b times a polynomial. …
7: 30.12 Generalized and Coulomb Spheroidal Functions
30.12.1 d d z ( ( 1 z 2 ) d w d z ) + ( λ + α z + γ 2 ( 1 z 2 ) μ 2 1 z 2 ) w = 0 ,
which reduces to (30.2.1) if α = 0 . …
30.12.2 d d z ( ( 1 z 2 ) d w d z ) + ( λ + γ 2 ( 1 z 2 ) α ( α + 1 ) z 2 μ 2 1 z 2 ) w = 0 ,
which also reduces to (30.2.1) when α = 0 . …
8: 12.19 Tables
  • Miller (1955) includes W ( a , x ) , W ( a , x ) , and reduced derivatives for a = 10 ( 1 ) 10 , x = 0 ( .1 ) 10 , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.

  • Murzewski and Sowa (1972) includes D n ( x ) ( = U ( n 1 2 , x ) ) for n = 1 ( 1 ) 20 , x = 0 ( .05 ) 3 , 7S.

  • 9: 36.5 Stokes Sets
    where j denotes a real critical point (36.4.1) or (36.4.2), and μ denotes a critical point with complex t or s , t , connected with j by a steepest-descent path (that is, a path where Φ = constant ) in complex t or ( s , t ) space. …
    36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
    36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
    See accompanying text
    Figure 36.5.5: Elliptic umbilic catastrophe with z = constant . … Magnify
    See accompanying text
    Figure 36.5.6: Hyperbolic umbilic catastrophe with z = constant . Magnify
    10: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Zhang and Jin (1996, Table 3.8) tabulates γ ( a , x ) for a = 0.5 , 1 , 3 , 5 , 10 , 25 , 50 , 100 , x = 0 ( .1 ) 1 ( 1 ) 3 , 5 ( 5 ) 30 , 50 , 100 to 8D or 8S.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.