About the Project

rational

AdvancedHelp

(0.001 seconds)

21—30 of 61 matching pages

21: Bibliography W
  • E. J. Weniger and J. Čížek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • E. J. Weniger (2003) A rational approximant for the digamma function. Numer. Algorithms 33 (1-4), pp. 499–507.
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q ” identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • C. A. Wills, J. M. Blair, and P. L. Ragde (1982) Rational Chebyshev approximations for the Bessel functions J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) . Math. Comp. 39 (160), pp. 617–623.
  • 22: Bibliography J
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • J. H. Johnson and J. M. Blair (1973) REMES2 — a Fortran program to calculate rational minimax approximations to a given function. Technical Report Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario.
  • 23: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • I. Marquette and C. Quesne (2013) New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54 (10), pp. Paper 102102, 12 pp..
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • 24: 19.2 Definitions
    Let s 2 ( t ) be a cubic or quartic polynomial in t with simple zeros, and let r ( s , t ) be a rational function of s and t containing at least one odd power of s . …
    19.2.1 r ( s , t ) d t
    19.2.2 r ( s , t ) = ( p 1 + p 2 s ) ( p 3 p 4 s ) s ( p 3 + p 4 s ) ( p 3 p 4 s ) s = ρ s + σ ,
    where p j is a polynomial in t while ρ and σ are rational functions of t . …
    19.2.3 ρ ( t ) s ( t ) d t .
    25: 32.9 Other Elementary Solutions
    These are rational solutions in ζ = z 1 / 3 of the form … These are rational solutions in ζ = z 1 / 2 of the form …
    26: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • W. A. Al-Salam and M. E. H. Ismail (1994) A q -beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121 (2), pp. 553–561.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • 27: Bibliography I
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • 28: 9.19 Approximations
  • Moshier (1989, §6.14) provides minimax rational approximations for calculating Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) . They are in terms of the variable ζ , where ζ = 2 3 x 3 / 2 when x is positive, ζ = 2 3 ( x ) 3 / 2 when x is negative, and ζ = 0 when x = 0 . The approximations apply when 2 ζ < , that is, when 3 2 / 3 x < or < x 3 2 / 3 . The precision in the coefficients is 21S.

  • 29: 31.14 General Fuchsian Equation
    An algorithm given in Kovacic (1986) determines if a given (not necessarily Fuchsian) second-order homogeneous linear differential equation with rational coefficients has solutions expressible in finite terms (Liouvillean solutions). …
    30: 23.20 Mathematical Applications
    If a , b , then by rescaling we may assume a , b . Let T denote the set of points on C that are of finite order (that is, those points P for which there exists a positive integer n with n P = o ), and let I , K be the sets of points with integer and rational coordinates, respectively. …