About the Project

quintuple product identity

AdvancedHelp

(0.002 seconds)

11—20 of 259 matching pages

11: 27.5 Inversion Formulas
If a Dirichlet series F ( s ) generates f ( n ) , and G ( s ) generates g ( n ) , then the product F ( s ) G ( s ) generates …called the Dirichlet product (or convolution) of f and g . The set of all number-theoretic functions f with f ( 1 ) 0 forms an abelian group under Dirichlet multiplication, with the function 1 / n in (27.2.5) as identity element; see Apostol (1976, p. 129). …For example, the equation ζ ( s ) ( 1 / ζ ( s ) ) = 1 is equivalent to the identity
27.5.8 g ( n ) = d | n f ( d ) f ( n ) = d | n ( g ( n d ) ) μ ( d ) .
12: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
A complex linear vector space V is called an inner product space if an inner product u , v is defined for all u , v V with the properties: (i) u , v is complex linear in u ; (ii) u , v = v , u ¯ ; (iii) v , v 0 ; (iv) if v , v = 0 then v = 0 . With norm defined by …Two elements u and v in V are orthogonal if u , v = 0 . … thus generalizing the inner product of (1.18.9). … The adjoint T of T does satisfy T f , g = f , T g where f , g = a b f ( x ) g ( x ) d x . …
13: 20.4 Values at z = 0
20.4.2 θ 1 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) 3 = 2 q 1 / 4 ( q 2 ; q 2 ) 3 ,
20.4.3 θ 2 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) ( 1 + q 2 n ) 2 ,
20.4.4 θ 3 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 ) 2 ,
20.4.5 θ 4 ( 0 , q ) = n = 1 ( 1 q 2 n ) ( 1 q 2 n 1 ) 2 .
Jacobi’s Identity
14: 22.9 Cyclic Identities
§22.9 Cyclic Identities
§22.9(ii) Typical Identities of Rank 2
§22.9(iii) Typical Identities of Rank 3
15: 25.15 Dirichlet L -functions
25.15.2 L ( s , χ ) = p ( 1 χ ( p ) p s ) 1 , s > 1 ,
with the product taken over all primes p , beginning with p = 2 . …
25.15.4 L ( s , χ ) = L ( s , χ 0 ) p | k ( 1 χ 0 ( p ) p s ) ,
25.15.6 G ( χ ) r = 1 k 1 χ ( r ) e 2 π i r / k .
16: 27.14 Unrestricted Partitions
Euler introduced the reciprocal of the infinite product
§27.14(v) Divisibility Properties
Ramanujan (1921) gives identities that imply divisibility properties of the partition function. For example, the Ramanujan identity …implies p ( 5 n + 4 ) 0 ( mod 5 ) . …
17: 25.10 Zeros
The product representation (25.2.11) implies ζ ( s ) 0 for s > 1 . …
25.10.1 Z ( t ) exp ( i ϑ ( t ) ) ζ ( 1 2 + i t ) ,
25.10.2 ϑ ( t ) ph Γ ( 1 4 + 1 2 i t ) 1 2 t ln π
18: 27.8 Dirichlet Characters
27.8.6 r = 1 ϕ ( k ) χ r ( m ) χ ¯ r ( n ) = { ϕ ( k ) , m n ( mod k ) , 0 , otherwise .
A Dirichlet character χ ( mod k ) is called primitive (mod k ) if for every proper divisor d of k (that is, a divisor d < k ), there exists an integer a 1 ( mod d ) , with ( a , k ) = 1 and χ ( a ) 1 . …
27.8.7 χ ( a ) = 1  for all  a 1  (mod  d ) , ( a , k ) = 1 .
Every Dirichlet character χ (mod k ) is a product
19: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • J. Riordan (1979) Combinatorial Identities. Robert E. Krieger Publishing Co., Huntington, NY.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 20: 21.7 Riemann Surfaces
    §21.7(ii) Fay’s Trisecant Identity
    where again all integration paths are identical for all components. Generalizations of this identity are given in Fay (1973, Chapter 2). …
    §21.7(iii) Frobenius’ Identity