About the Project

principal branches (or values)

AdvancedHelp

(0.003 seconds)

21—30 of 178 matching pages

21: 32.11 Asymptotic Approximations for Real Variables
32.11.8 d 2 = π 1 ln ( 1 k 2 ) ,
32.11.17 d 2 = π 1 ln ( 1 + k 2 ) , sign ( k ) = ( 1 ) n .
32.11.20 ψ ( x ) = 2 3 2 x 3 / 2 3 2 ρ 2 ln x .
32.11.34 ϕ ( x ) = 1 3 3 x 2 4 3 d 2 3 ln ( 2 | x | ) ,
32.11.35 d 2 = 1 4 3 π 1 ln ( 1 | μ | 2 ) ,
22: 25.8 Sums
25.8.4 k = 1 ( 1 ) k k ( ζ ( n k ) 1 ) = ln ( j = 0 n 1 Γ ( 2 e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , .
25.8.7 k = 2 ζ ( k ) k z k = γ z + ln Γ ( 1 z ) , | z | < 1 .
25.8.8 k = 1 ζ ( 2 k ) k z 2 k = ln ( π z sin ( π z ) ) , | z | < 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
23: 6.8 Inequalities
6.8.1 1 2 ln ( 1 + 2 x ) < e x E 1 ( x ) < ln ( 1 + 1 x ) ,
24: 4.13 Lambert W -Function
We call the increasing solution for which W ( z ) W ( e 1 ) = 1 the principal branch and denote it by W 0 ( z ) . …
See accompanying text
Figure 4.13.1: Branches W 0 ( x ) , W ± 1 ( x 0 i ) of the Lambert W -function. Magnify
4.13.1_1 W k ( z ) = ln k ( z ) ln ( ln k ( z ) ) + o ( 1 ) , | z | ,
4.13.1_2 ω ( z ) + ln ( ω ( z ) ) = z ,
4.13.16 W 0 ( z ) = 1 π 0 π ln ( 1 + z sin t t e t cot t ) d t .
25: 10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
26: 19.27 Asymptotic Approximations and Expansions
19.27.2 R F ( x , y , z ) = 1 2 z ( ln 8 z a + g ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.4 R G ( x , y , z ) = z 2 ( 1 + O ( a z ln z a ) ) , a / z 0 .
19.27.6 R G ( 0 , y , z ) = z 2 + y 8 z ( ln ( 16 z y ) 1 ) ( 1 + O ( y z ) ) , y / z 0 .
19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.9 R D ( x , y , z ) = 3 x z ( y + z ) ( 1 + O ( b x ln x b ) ) , b / x 0 .
27: 4.45 Methods of Computation
4.45.2 ln x = 2 m ln ( 1 + y ) .
4.45.3 ln x = ln ξ + m ln 10 .
4.45.15 ln z = ln | z | + i ph z , π ph z π ,
For x [ 1 / e , ) the principal branch Wp ( x ) can be computed by solving the defining equation W e W = x numerically, for example, by Newton’s rule (§3.8(ii)). …
28: 19.12 Asymptotic Approximations
19.12.1 K ( k ) = m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m ( ln ( 1 k ) + d ( m ) ) , 0 < | k | < 1 ,
19.12.2 E ( k ) = 1 + 1 2 m = 0 ( 1 2 ) m ( 3 2 ) m ( 2 ) m m ! k 2 m + 2 ( ln ( 1 k ) + d ( m ) 1 ( 2 m + 1 ) ( 2 m + 2 ) ) , | k | < 1 ,
19.12.7 R C ( x , y ) = 1 2 x ( ( 1 + y 2 x ) ln ( 4 x y ) y 2 x ) ( 1 + O ( y 2 / x 2 ) ) , y / x 0 .
29: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). … The principal branch has a cut along the interval [ 1 , ) and agrees with (25.12.1) when | z | 1 ; see also §4.2(i). The remainder of the equations in this subsection apply to principal branches. …
25.12.6 Li 2 ( x ) + Li 2 ( 1 x ) = 1 6 π 2 ( ln x ) ln ( 1 x ) , 0 < x < 1 .
25.12.9 n = 1 sin ( n θ ) n 2 = 0 θ ln ( 2 sin ( 1 2 x ) ) d x .
30: 4.26 Integrals
4.26.3 tan x d x = ln ( cos x ) , 1 2 π < x < 1 2 π .
4.26.16 arctan x d x = x arctan x 1 2 ln ( 1 + x 2 ) , < x < ,
4.26.17 arccsc x d x = x arccsc x + ln ( x + ( x 2 1 ) 1 / 2 ) , 1 < x < ,