About the Project

polynomial solutions

AdvancedHelp

(0.003 seconds)

31—40 of 70 matching pages

31: 28.34 Methods of Computation
  • (b)

    Representations for w I ( π ; a , ± q ) with limit formulas for special solutions of the recurrence relations §28.4(ii) for fixed a and q ; see Schäfke (1961a).

  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • (e)

    Solution of the continued-fraction equations (28.6.16)–(28.6.19) and (28.15.2) by successive approximation. See Blanch (1966), Shirts (1993a), and Meixner and Schäfke (1954, §2.87).

  • §28.34(iii) Floquet Solutions
  • (c)

    Solution of (28.2.1) by boundary-value methods; see §3.7(iii). This can be combined with §28.34(ii)(c).

  • 32: 32.9 Other Elementary Solutions
    §32.9 Other Elementary Solutions
    Elementary nonrational solutions of P III  are … Then P III  has algebraic solutions iff … Elementary nonrational solutions of P V  are …
    33: 36.5 Stokes Sets
    For | Y | > Y 1 the second sheet is generated by a second solution of (36.5.6)–(36.5.9), and for | Y | < Y 1 it is generated by the roots of the polynomial equation …
    34: 22.19 Physical Applications
    Hyperelliptic functions u ( z ) are solutions of the equation z = 0 u ( f ( x ) ) 1 / 2 d x , where f ( x ) is a polynomial of degree higher than 4. …
    35: Bibliography
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 36: Bibliography H
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • E. Hendriksen and H. van Rossum (1986) Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 37: Bibliography L
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • 38: 33.22 Particle Scattering and Atomic and Molecular Spectra
    The solutions to this equation are closely related to the Coulomb functions; see Greiner et al. (1985).
    §33.22(v) Asymptotic Solutions
    The Coulomb solutions of the Schrödinger and Klein–Gordon equations are almost always used in the external region, outside the range of any non-Coulomb forces or couplings. …
    §33.22(vi) Solutions Inside the Turning Point
  • Solution of relativistic Coulomb equations. See for example Cooper et al. (1979) and Barnett (1981b).

  • 39: 29.6 Fourier Series
    When ν 2 n , where n is a nonnegative integer, it follows from §2.9(i) that for any value of H the system (29.6.4)–(29.6.6) has a unique recessive solution A 0 , A 2 , A 4 , ; furthermore …In addition, if H satisfies (29.6.2), then (29.6.3) applies. In the special case ν = 2 n , m = 0 , 1 , , n , there is a unique nontrivial solution with the property A 2 p = 0 , p = n + 1 , n + 2 , . This solution can be constructed from (29.6.4) by backward recursion, starting with A 2 n + 2 = 0 and an arbitrary nonzero value of A 2 n , followed by normalization via (29.6.5) and (29.6.6). Consequently, 𝐸𝑐 ν 2 m ( z , k 2 ) reduces to a Lamé polynomial; compare §§29.12(i) and 29.15(i). …
    40: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • K. Kajiwara and Y. Ohta (1998) Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31 (10), pp. 2431–2446.
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.