About the Project

parameters

AdvancedHelp

(0.001 seconds)

41—50 of 386 matching pages

41: 32.6 Hamiltonian Structure
The Hamiltonian for P III  is …
32.6.17 z q = 2 q 2 p κ z q 2 ( 2 θ 0 + 1 ) q + κ 0 z ,
The Hamiltonian for P III  with γ = 0 is …
32.6.33 z q = 2 q 2 p + θ q κ 0 z ,
32.6.34 z p = 2 q p 2 θ p + κ z .
42: 36.9 Integral Identities
36.9.4 | Ψ 2 ( x , y ) | 2 = 0 ( Ψ 1 ( 4 u 3 + 2 u y + x u 1 / 3 ) + Ψ 1 ( 4 u 3 + 2 u y x u 1 / 3 ) ) d u u 1 / 3 .
36.9.5 | Ψ 2 ( x , y ) | 2 = 2 0 cos ( 2 x u ) Ψ 1 ( 2 u 2 / 3 ( y + 2 u 2 ) ) d u u 1 / 3 .
36.9.6 | Ψ 3 ( x , y , z ) | 2 = 2 4 / 5 Ψ 3 ( 2 4 / 5 ( x + 2 u y + 3 u 2 z + 5 u 4 ) , 0 , 2 2 / 5 ( z + 10 u 2 ) ) d u .
36.9.7 | Ψ 3 ( x , y , z ) | 2 = 2 7 / 4 5 1 / 4 0 ( e 2 i u ( u 4 + z u 2 + x ) Ψ 2 ( 2 7 / 4 5 1 / 4 y u 3 / 4 , 2 u 5 ( 3 z + 10 u 2 ) ) ) d u u 1 / 4 .
36.9.8 | Ψ ( H ) ( x , y , z ) | 2 = 8 π 2 ( 2 9 ) 1 / 3 Ai ( ( 4 3 ) 1 / 3 ( x + z v + 3 u 2 ) ) Ai ( ( 4 3 ) 1 / 3 ( y + z u + 3 v 2 ) ) d u d v .
43: 31.8 Solutions via Quadratures
For half-odd-integer values of the exponent parameters: …
31.8.2 w ± ( 𝐦 ; λ ; z ) = Ψ g , N ( λ , z ) exp ( ± i ν ( λ ) 2 z 0 z t m 1 ( t 1 ) m 2 ( t a ) m 3 d t Ψ g , N ( λ , t ) t ( t 1 ) ( t a ) )
The curve Γ reflects the finite-gap property of Equation (31.2.1) when the exponent parameters satisfy (31.8.1) for m j . …
44: 31.17 Physical Applications
for the common eigenfunction Ψ ( 𝐱 ) = Ψ ( x s , x t , x u ) , where a is the coupling parameter of interacting spins. …
31.17.2 x s 2 z k + x t 2 z k 1 + x u 2 z k a = 0 , k = 1 , 2 ,
31.17.4 Ψ ( 𝐱 ) = ( z 1 z 2 ) s 1 4 ( ( z 1 1 ) ( z 2 1 ) ) t 1 4 ( ( z 1 a ) ( z 2 a ) ) u 1 4 w ( z 1 ) w ( z 2 ) ,
where w ( z ) satisfies Heun’s equation (31.2.1) with a as in (31.17.1) and the other parameters given by …
45: 8.18 Asymptotic Expansions of I x ( a , b )
§8.18(i) Large Parameters, Fixed x
§8.18(ii) Large Parameters: Uniform Asymptotic Expansions
Symmetric Case
General Case
Inverse Function
46: 36.10 Differential Equations
36.10.5 4 Ψ 3 x 4 3 5 z 2 Ψ 3 x 2 2 i 5 y Ψ 3 x + 1 5 x Ψ 3 = 0 .
47: 28.15 Expansions for Small q
28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
48: 29.4 Graphics
49: 12.1 Special Notation
x , y real variables.
a , ν real or complex parameters.
50: 12.8 Recurrence Relations and Derivatives
12.8.1 z U ( a , z ) U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.3 U ( a , z ) 1 2 z U ( a , z ) + U ( a 1 , z ) = 0 ,
12.8.4 2 U ( a , z ) + U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 .
12.8.5 z V ( a , z ) V ( a + 1 , z ) + ( a 1 2 ) V ( a 1 , z ) = 0 ,