About the Project

parameters

AdvancedHelp

(0.002 seconds)

31—40 of 386 matching pages

31: 36.4 Bifurcation Sets
36.4.5 x = 0 .
36.4.6 27 x 2 = 8 y 3 .
36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
36.4.13 x = y = 1 4 z 2 .
32: 16.22 Asymptotic Expansions
For asymptotic expansions of Meijer G -functions with large parameters see Fields (1973, 1983).
33: 31.7 Relations to Other Functions
31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . Below are three such reductions with three and two parameters. …
31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
34: 31.10 Integral Equations and Representations
31.10.2 ρ ( t ) = t γ 1 ( t 1 ) δ 1 ( t a ) ϵ 1 ,
31.10.4 𝒟 z = z ( z 1 ) ( z a ) ( 2 / z 2 ) + ( γ ( z 1 ) ( z a ) + δ z ( z a ) + ϵ z ( z 1 ) ) ( / z ) + α β z .
31.10.6 p ( t ) = t γ ( t 1 ) δ ( t a ) ϵ .
31.10.10 𝒦 ( z , t ) = ( z t a ) 1 2 δ σ F 1 2 ( 1 2 δ σ + α , 1 2 δ σ + β γ ; z t a ) F 1 2 ( 1 2 + δ + σ , 1 2 + ϵ σ δ ; a ( z 1 ) ( t 1 ) ( a 1 ) ( z t a ) ) ,
31.10.13 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( 1 s ) ( 1 t ) ) δ 1 ( ( 1 ( s / a ) ) ( 1 ( t / a ) ) ) ϵ 1 ,
35: 29.7 Asymptotic Expansions
29.7.1 a ν m ( k 2 ) p κ τ 0 τ 1 κ 1 τ 2 κ 2 ,
29.7.3 τ 0 = 1 2 3 ( 1 + k 2 ) ( 1 + p 2 ) ,
29.7.4 τ 1 = p 2 6 ( ( 1 + k 2 ) 2 ( p 2 + 3 ) 4 k 2 ( p 2 + 5 ) ) .
29.7.5 b ν m + 1 ( k 2 ) a ν m ( k 2 ) = O ( ν m + 3 2 ( 1 k 1 + k ) ν ) , ν .
29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
36: 15.11 Riemann’s Differential Equation
15.11.2 a 1 + a 2 + b 1 + b 2 + c 1 + c 2 = 1 .
15.11.3 w = P { α β γ a 1 b 1 c 1 z a 2 b 2 c 2 } .
15.11.8 z λ ( 1 z ) μ P { 0 1 a 1 b 1 c 1 z a 2 b 2 c 2 } = P { 0 1 a 1 + λ b 1 + μ c 1 λ μ z a 2 + λ b 2 + μ c 2 λ μ } ,
37: 36.3 Visualizations of Canonical Integrals
38: 16.27 Software
§16.27(ii) Real Argument and Parameters
§16.27(iii) Complex Argument and/or Parameters
39: 29.10 Lamé Functions with Imaginary Periods
29.10.1 h = ν ( ν + 1 ) h ,
29.10.3 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) ) w = 0 .
40: 36.1 Special Notation
l , m , n integers.
𝐱 { x 1 , x 2 , , x K } , where x 1 , x 2 , , x K are real parameters; also x 1 = x , x 2 = y , x 3 = z when K 3 .