About the Project

parabolic cylinder functions

AdvancedHelp

(0.008 seconds)

31—40 of 60 matching pages

31: 12.19 Tables
§12.19 Tables
32: 14.15 Uniform Asymptotic Approximations
Here we introduce the envelopes of the parabolic cylinder functions U ( c , x ) , U ¯ ( c , x ) , which are defined in §12.2. For U ( c , x ) or U ¯ ( c , x ) , with c and x nonnegative, …
14.15.24 𝖯 ν μ ( x ) = 1 ( ν + 1 2 ) 1 / 4 2 ( ν + μ ) / 2 Γ ( 1 2 ν + 1 2 μ + 3 4 ) ( ζ 2 α 2 x 2 a 2 ) 1 / 4 ( U ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) + O ( ν 2 / 3 ) env U ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) ) ,
14.15.25 𝖰 ν μ ( x ) = π ( ν + 1 2 ) 1 / 4 2 ( ν + μ + 2 ) / 2 Γ ( 1 2 ν + 1 2 μ + 3 4 ) ( ζ 2 α 2 x 2 a 2 ) 1 / 4 ( U ¯ ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) + O ( ν 2 / 3 ) env U ¯ ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) ) ,
14.15.30 𝖯 ν μ ( x ) = 1 ( ν + 1 2 ) 1 / 4 2 ( ν + μ ) / 2 Γ ( 1 2 ν + 1 2 μ + 3 4 ) ( ζ 2 + α 2 x 2 + a 2 ) 1 / 4 U ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) ( 1 + O ( ν 1 ln ν ) ) ,
33: 32.10 Special Function Solutions
§32.10(iv) Fourth Painlevé Equation
P IV  has solutions expressible in terms of parabolic cylinder functions12.2) iff either …
32.10.19 ϕ ( z ) = ( C 1 U ( a , 2 z ) + C 2 V ( a , 2 z ) ) exp ( 1 2 ε z 2 ) ,
When a + 1 2 is zero or a negative integer the U parabolic cylinder functions reduce to Hermite polynomials (§18.3) times an exponential function; thus …
34: Bibliography T
  • G. Taubmann (1992) Parabolic cylinder functions U ( n , x ) for natural n and positive x . Comput. Phys. Commun. 69, pp. 415–419.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • N. M. Temme (2000) Numerical and asymptotic aspects of parabolic cylinder functions. J. Comput. Appl. Math. 121 (1-2), pp. 221–246.
  • 35: Bibliography S
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940b) On certain integrals and expansions involving Weber’s parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • G. Shanmugam (1978) Parabolic Cylinder Functions and their Application in Symmetric Two-centre Shell Model. In Proceedings of the Conference on Mathematical Analysis and its Applications (Inst. Engrs., Mysore, 1977), Matscience Rep., Vol. 91, Aarhus, pp. P81–P89.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • 36: 18.11 Relations to Other Functions
    18.11.3 H n ( x ) = 2 n U ( 1 2 n , 1 2 , x 2 ) = 2 n x U ( 1 2 n + 1 2 , 3 2 , x 2 ) = 2 1 2 n e 1 2 x 2 U ( n 1 2 , 2 1 2 x ) ,
    18.11.4 𝐻𝑒 n ( x ) = 2 1 2 n U ( 1 2 n , 1 2 , 1 2 x 2 ) = 2 1 2 ( n 1 ) x U ( 1 2 n + 1 2 , 3 2 , 1 2 x 2 ) = e 1 4 x 2 U ( n 1 2 , x ) .
    For the parabolic cylinder function U ( a , z ) , see §12.2. …
    37: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • A. Gil, J. Segura, and N. M. Temme (2006a) Computing the real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 70–101.
  • A. Gil, J. Segura, and N. M. Temme (2006b) Algorithm 850: Real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 102–112.
  • A. Gil, J. Segura, and N. M. Temme (2011a) Algorithm 914: parabolic cylinder function W ( a , x ) and its derivative. ACM Trans. Math. Software 38 (1), pp. Art. 6, 5.
  • A. Gil, J. Segura, and N. M. Temme (2011b) Fast and accurate computation of the Weber parabolic cylinder function W ( a , x ) . IMA J. Numer. Anal. 31 (3), pp. 1194–1216.
  • 38: 32.3 Graphics
    32.3.3 u k U ( ν 1 2 , x ) , x + .
    32.3.5 w ( x ) 2 2 k 2 U 2 ( ν 1 2 , 2 x ) , x + ;
    39: Bibliography O
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 40: 28.8 Asymptotic Expansions for Large q
    28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
    28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
    The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. …