About the Project

parabolic%20cylinder%20functions

AdvancedHelp

(0.005 seconds)

1—10 of 14 matching pages

1: 12.10 Uniform Asymptotic Expansions for Large Parameter
§12.10 Uniform Asymptotic Expansions for Large Parameter
§12.10(vi) Modifications of Expansions in Elementary Functions
Modified Expansions
2: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • A. Gil, J. Segura, and N. M. Temme (2006a) Computing the real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 70–101.
  • A. Gil, J. Segura, and N. M. Temme (2006b) Algorithm 850: Real parabolic cylinder functions U ( a , x ) , V ( a , x ) . ACM Trans. Math. Software 32 (1), pp. 102–112.
  • A. Gil, J. Segura, and N. M. Temme (2011a) Algorithm 914: parabolic cylinder function W ( a , x ) and its derivative. ACM Trans. Math. Software 38 (1), pp. Art. 6, 5.
  • A. Gil, J. Segura, and N. M. Temme (2011b) Fast and accurate computation of the Weber parabolic cylinder function W ( a , x ) . IMA J. Numer. Anal. 31 (3), pp. 1194–1216.
  • 3: 12.19 Tables
    §12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Miller (1955) includes W ( a , x ) , W ( a , x ) , and reduced derivatives for a = 10 ( 1 ) 10 , x = 0 ( .1 ) 10 , 8D or 8S. Modulus and phase functions, and also other auxiliary functions are tabulated.

  • Fox (1960) includes modulus and phase functions for W ( a , x ) and W ( a , x ) , and several auxiliary functions for x 1 = 0 ( .005 ) 0.1 , a = 10 ( 1 ) 10 , 8S.

  • Murzewski and Sowa (1972) includes D n ( x ) ( = U ( n 1 2 , x ) ) for n = 1 ( 1 ) 20 , x = 0 ( .05 ) 3 , 7S.

  • 4: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • 5: Software Index
    Open Source With Book Commercial
    12 Parabolic Cylinder Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    6: Bibliography F
  • M. Faierman (1992) Generalized parabolic cylinder functions. Asymptotic Anal. 5 (6), pp. 517–531.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 7: Bibliography C
  • B. C. Carlson (1985) The hypergeometric function and the R -function near their branch points. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 8: 12.11 Zeros
    §12.11(i) Distribution of Real Zeros
    §12.11(ii) Asymptotic Expansions of Large Zeros
    §12.11(iii) Asymptotic Expansions for Large Parameter
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). … For the first zero of U ( a , x ) we also have …
    9: Bibliography O
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • M. Onoe (1955) Formulae and Tables, The Modified Quotients of Cylinder Functions. Technical report Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
  • M. Onoe (1956) Modified quotients of cylinder functions. Math. Tables Aids Comput. 10, pp. 27–28.
  • R. H. Ott (1985) Scattering by a parabolic cylinder—a uniform asymptotic expansion. J. Math. Phys. 26 (4), pp. 854–860.
  • 10: 28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    §28.8(iii) Goldstein’s Expansions
    Barrett’s Expansions
    The approximants are elementary functions, Airy functions, Bessel functions, and parabolic cylinder functions; compare §2.8. …