About the Project

orthogonal%20polynomials

AdvancedHelp

(0.003 seconds)

11—20 of 22 matching pages

11: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • W. Koepf (1999) Orthogonal polynomials and computer algebra. In Recent developments in complex analysis and computer algebra (Newark, DE, 1997), R. P. Gilbert, J. Kajiwara, and Y. S. Xu (Eds.), Int. Soc. Anal. Appl. Comput., Vol. 4, Dordrecht, pp. 205–234.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • T. Kriecherbauer and K. T.-R. McLaughlin (1999) Strong asymptotics of polynomials orthogonal with respect to Freud weights. Internat. Math. Res. Notices 1999 (6), pp. 299–333.
  • 12: Bibliography
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 13: Bibliography M
  • I. G. Macdonald (1998) Symmetric Functions and Orthogonal Polynomials. University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
  • I. G. Macdonald (2000) Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
  • I. G. Macdonald (2003) Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • 15: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • B. Simon (2005a) Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • G. Szegö (1950) On certain special sets of orthogonal polynomials. Proc. Amer. Math. Soc. 1, pp. 731–737.
  • G. Szegő (1967) Orthogonal Polynomials. 3rd edition, American Mathematical Society, New York.
  • 16: Bibliography C
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • Y. Chen and M. E. H. Ismail (1998) Asymptotics of the largest zeros of some orthogonal polynomials. J. Phys. A 31 (25), pp. 5525–5544.
  • T. S. Chihara (1978) An Introduction to Orthogonal Polynomials. Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York.
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111–119.
  • M. S. Costa, E. Godoy, R. L. Lamblém, and A. Sri Ranga (2012) Basic hypergeometric functions and orthogonal Laurent polynomials. Proc. Amer. Math. Soc. 140 (6), pp. 2075–2089.
  • 17: Bibliography W
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. A. Wilson (1980) Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11 (4), pp. 690–701.
  • 18: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • 19: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. A. Leonard (1982) Orthogonal polynomials, duality and association schemes. SIAM J. Math. Anal. 13 (4), pp. 656–663.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • E. Levin and D. Lubinsky (2005) Orthogonal polynomials for exponential weights x 2 ρ e 2 Q ( x ) on [ 0 , d ) . J. Approx. Theory 134 (2), pp. 199–256.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • 20: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.