About the Project

of arbitrary order

AdvancedHelp

(0.002 seconds)

31—40 of 49 matching pages

31: 8.11 Asymptotic Approximations and Expansions
where δ denotes an arbitrary small positive constant. …
8.11.11 γ ( 1 a , x ) = x a 1 ( cos ( π a ) + sin ( π a ) π ( 2 π F ( y ) + 2 3 2 π a ( 1 y 2 ) ) e y 2 + O ( a 1 ) ) ,
32: 13.21 Uniform Asymptotic Approximations for Large κ
13.21.1 M κ , μ ( x ) = x Γ ( 2 μ + 1 ) κ μ ( J 2 μ ( 2 x κ ) + env J 2 μ ( 2 x κ ) O ( κ 1 2 ) ) ,
uniformly with respect to x ( 0 , A ] in each case, where A is an arbitrary positive constant. …
13.21.6 M κ , μ ( 4 κ x ) = 2 Γ ( 2 μ + 1 ) κ μ 1 2 ( x ζ 1 + x ) 1 4 I 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
13.21.7 W κ , μ ( 4 κ x ) = 8 / π e κ κ κ 1 2 ( x ζ 1 + x ) 1 4 K 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
uniformly with respect to μ [ 0 , ( 1 δ ) κ ] and x ( 0 , ( 1 δ ) ( 2 κ + 2 κ 2 μ 2 ) ] , where δ again denotes an arbitrary small positive constant. …
33: 1.3 Determinants, Linear Operators, and Spectral Expansions
Higher-order determinants are natural generalizations. The minor M j k of the entry a j k in the n th-order determinant det [ a j k ] is the ( n 1 )th-order determinant derived from det [ a j k ] by deleting the j th row and the k th column. …An n th-order determinant expanded by its j th row is given by …If all the elements of a row (column) of a determinant are multiplied by an arbitrary factor μ , then the result is a determinant which is μ times the original. …
34: 13.7 Asymptotic Expansions for Large Argument
Here δ denotes an arbitrary small positive constant. … where m is an arbitrary nonnegative integer, and …
13.7.13 R m , n ( a , b , z ) = { O ( e | z | z m ) , | ph z | π , O ( e z z m ) , π | ph z | 5 2 π δ .
35: 32.2 Differential Equations
with α , β , γ , and δ arbitrary constants. … be a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in . … For arbitrary values of the parameters α , β , γ , and δ , the general solutions of P I P VI  are transcendental, that is, they cannot be expressed in closed-form elementary functions. …
32.2.28 w ( z ; α , β , γ , δ ) = 1 + 2 ϵ W ( ζ ; a ) ,
32.2.32 w ( z ; α , β , γ , δ ) = 1 + ϵ ζ W ( ζ ; a , b , c , d ) ,
36: 13.20 Uniform Asymptotic Approximations for Large μ
13.20.1 M κ , μ ( z ) = z μ + 1 2 ( 1 + O ( μ 1 ) ) ,
13.20.2 W κ , μ ( x ) = π 1 2 Γ ( κ + μ ) ( 1 4 x ) 1 2 μ ( 1 + O ( μ 1 ) ) ,
13.20.4 M κ , μ ( x ) = 2 μ x X ( 4 μ 2 x 2 μ 2 κ x + μ X ) μ ( 2 ( μ κ ) X + x 2 κ ) κ e 1 2 X μ ( 1 + O ( 1 μ ) ) ,
13.20.5 W κ , μ ( x ) = x X ( 2 μ 2 κ x + μ X ( μ κ ) x ) μ ( X + x 2 κ 2 ) κ e 1 2 X κ ( 1 + O ( 1 μ ) ) ,
uniformly with respect to x ( 0 , ) and κ [ 0 , ( 1 δ ) μ ] , where δ again denotes an arbitrary small positive constant. …
37: 32.11 Asymptotic Approximations for Real Variables
32.11.6 w k ( x ) = d | x | 1 / 4 sin ( ϕ ( x ) θ 0 ) + o ( | x | 1 / 4 ) ,
with d ( 0 ) and χ arbitrary real constants. …
32.11.19 w ( x ) = σ 1 2 x + σ ρ ( 2 x ) 1 / 4 cos ( ψ ( x ) + θ ) + O ( x 1 ) , x + ,
where λ is an arbitrary constant such that 1 / π < λ < 1 / π , and …where B and σ are arbitrary constants such that B 0 and | σ | < 1 . …
38: 18.16 Zeros
18.16.8 θ n , m = ϕ m + ( ( α 2 1 4 ) 1 ϕ m cot ϕ m 2 ϕ m 1 4 ( α 2 β 2 ) tan ( 1 2 ϕ m ) ) 1 ρ 2 + ϕ m 2 O ( 1 ρ 3 ) ,
uniformly for m = 1 , 2 , , c n , where c is an arbitrary constant such that 0 < c < 1 . …
18.16.14 x n , n m + 1 = ν + 2 2 3 a m ν 1 3 + 1 5 2 4 3 a m 2 ν 1 3 + O ( n 1 ) ,
Arrange them in decreasing order: …
18.16.18 ϵ n , m = O ( n 5 6 ) .
39: 32.10 Special Function Solutions
with C 1 , C 2 arbitrary constants. … with a = α + 1 2 ε , and C 1 , C 2 arbitrary constants. … where C is an arbitrary constant and erfc is the complementary error function (§7.2(i)). … with C 1 , C 2 arbitrary constants. … with C 1 , C 2 arbitrary constants. …
40: Bibliography F
  • E. M. Ferreira and J. Sesma (2008) Zeros of the Macdonald function of complex order. J. Comput. Appl. Math. 211 (2), pp. 223–231.
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.