About the Project

normal equations

AdvancedHelp

(0.002 seconds)

41—50 of 74 matching pages

41: 28.14 Fourier Series
28.14.4 q c 2 m + 2 ( a ( ν + 2 m ) 2 ) c 2 m + q c 2 m 2 = 0 , a = λ ν ( q ) , c 2 m = c 2 m ν ( q ) ,
and the normalization relation
28.14.5 m = ( c 2 m ν ( q ) ) 2 = 1 ;
42: 8.18 Asymptotic Expansions of I x ( a , b )
8.18.3 I x ( a , b ) = Γ ( a + b ) Γ ( a ) ( k = 0 n 1 d k F k + O ( a n ) F 0 ) ,
8.18.13See (5.11.3).
For asymptotic expansions for large values of a and/or b of the x -solution of the equation
43: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • J. Wishart (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, pp. 32–52.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 44: 10.22 Integrals
    10.22.72 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 μ d t = ( b c ) μ 1 sin ( ( μ ν ) π ) ( sinh χ ) μ 1 2 ( 1 2 π 3 ) 1 2 a μ e ( μ 1 2 ) i π Q ν 1 2 1 2 μ ( cosh χ ) , μ > 1 2 , ν > 1 , a > b + c , cosh χ = ( a 2 b 2 c 2 ) / ( 2 b c ) .
    45: 20.13 Physical Applications
    The functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation …with κ = i π / 4 . … These two apparently different solutions differ only in their normalization and boundary conditions. …Theta-function solutions to the heat diffusion equation with simple boundary conditions are discussed in Lawden (1989, pp. 1–3), and with more general boundary conditions in Körner (1989, pp. 274–281). … This allows analytic time propagation of quantum wave-packets in a box, or on a ring, as closed-form solutions of the time-dependent Schrödinger equation.
    46: 30.4 Functions of the First Kind
    They are normalized by the condition …
    30.4.5 α k g k + 2 + ( β k λ n m ( γ 2 ) ) g k + γ k g k 2 = 0
    Normalization of the coefficients g k is effected by application of (30.4.1). …
    47: 29.6 Fourier Series
    29.6.2 H = 2 a ν 2 m ( k 2 ) ν ( ν + 1 ) k 2 ,
    This solution can be constructed from (29.6.4) by backward recursion, starting with A 2 n + 2 = 0 and an arbitrary nonzero value of A 2 n , followed by normalization via (29.6.5) and (29.6.6). …
    29.6.17 H = 2 a ν 2 m + 1 ( k 2 ) ν ( ν + 1 ) k 2 ,
    29.6.32 H = 2 b ν 2 m + 1 ( k 2 ) ν ( ν + 1 ) k 2 ,
    29.6.47 H = 2 b ν 2 m + 2 ( k 2 ) ν ( ν + 1 ) k 2 ,
    48: 28.4 Fourier Series
    §28.4(iii) Normalization
    28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
    28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
    28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
    28.4.27 B 2 m 2 n + 2 ( q ) B 2 2 n + 2 ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m q π ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 2 ( q ) , q ) .
    49: 28.6 Expansions for Small q
    §28.6(i) Eigenvalues
    Higher coefficients in the foregoing series can be found by equating coefficients in the following continued-fraction equations: …
    Table 28.6.1: Radii of convergence for power-series expansions of eigenvalues of Mathieu’s equation.
    n ρ n ( 1 ) ρ n ( 2 ) ρ n ( 3 )
    where k is the unique root of the equation 2 E ( k ) = K ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . … Leading terms of the power series for the normalized functions are: …
    50: 8.11 Asymptotic Approximations and Expansions
    8.11.5 P ( a , z ) z a e z Γ ( 1 + a ) ( 2 π a ) 1 2 e a z ( z / a ) a , a , | ph a | π δ .
    8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
    8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
    8.11.12 Γ ( z , z ) z z 1 e z ( π 2 z 1 2 1 3 + 2 π 24 z 1 2 4 135 z + 2 π 576 z 3 2 + 8 2835 z 2 + ) , | ph z | 2 π δ .