About the Project

mollified error

AdvancedHelp

(0.002 seconds)

11—20 of 175 matching pages

11: 7.10 Derivatives
§7.10 Derivatives
7.10.1 d n + 1 erf z d z n + 1 = ( 1 ) n 2 π H n ( z ) e z 2 , n = 0 , 1 , 2 , .
7.10.2 w ( z ) = 2 z w ( z ) + ( 2 i / π ) ,
7.10.3 w ( n + 2 ) ( z ) + 2 z w ( n + 1 ) ( z ) + 2 ( n + 1 ) w ( n ) ( z ) = 0 , n = 0 , 1 , 2 , .
12: 7.17 Inverse Error Functions
§7.17 Inverse Error Functions
§7.17(i) Notation
The inverses of the functions x = erf y , x = erfc y , y , are denoted by …
§7.17(ii) Power Series
§7.17(iii) Asymptotic Expansion of inverfc x for Small x
13: 7.3 Graphics
See accompanying text
Figure 7.3.1: Complementary error functions erfc x and erfc ( 10 x ) , 3 x 3 . Magnify
See accompanying text
Figure 7.3.5: | erf ( x + i y ) | , 3 x 3 , 3 y 3 . … Magnify 3D Help
See accompanying text
Figure 7.3.6: | erfc ( x + i y ) | , 3 x 3 , 3 y 3 . … Magnify 3D Help
14: 7.23 Tables
  • Finn and Mugglestone (1965) includes the Voigt function H ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Abramowitz and Stegun (1964, Chapter 7) includes w ( z ) , x = 0 ( .1 ) 3.9 , y = 0 ( .1 ) 3 , 6D.

  • Fettis et al. (1973) gives the first 100 zeros of erf z and w ( z ) (the table on page 406 of this reference is for w ( z ) , not for erfc z ), 11S.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 15: 7 Error Functions, Dawson’s and Fresnel Integrals
    Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
    16: 7.25 Software
    §7.25(ii) erf x , erfc x , i n erfc ( x ) , x
    §7.25(iii) erf z , erfc z , w ( z ) , z
    17: 7.9 Continued Fractions
    §7.9 Continued Fractions
    7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
    7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
    7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
    18: 7.20 Mathematical Applications
    §7.20(i) Asymptotics
    For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
    §7.20(iii) Statistics
    For applications in statistics and probability theory, also for the role of the normal distribution functions (the error functions and probability integrals) in the asymptotics of arbitrary probability density functions, see Johnson et al. (1994, Chapter 13) and Patel and Read (1982, Chapters 2 and 3).
    19: 7.4 Symmetry
    7.4.1 erf ( z ) = erf ( z ) ,
    7.4.2 erfc ( z ) = 2 erfc ( z ) ,
    7.4.3 w ( z ) = 2 e z 2 w ( z ) .
    20: 7.11 Relations to Other Functions
    Incomplete Gamma Functions and Generalized Exponential Integral
    Confluent Hypergeometric Functions