About the Project

modified

AdvancedHelp

(0.001 seconds)

31—40 of 177 matching pages

31: 10.43 Integrals
β–Ί
§10.43(i) Indefinite Integrals
β–ΊFor the modified Struve function 𝐋 Ξ½ ⁑ ( z ) see §11.2(i). … β–Ίβ–Ί β–Ί
§10.43(v) Kontorovich–Lebedev Transform
32: 10.76 Approximations
β–Ί
§10.76(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions
β–Ί
Real Variable; Imaginary Order
33: 11.1 Special Notation
§11.1 Special Notation
β–ΊFor the functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) , I Ξ½ ⁑ ( z ) , and K Ξ½ ⁑ ( z ) see §§10.2(ii), 10.25(ii). β–ΊThe functions treated in this chapter are the Struve functions 𝐇 Ξ½ ⁑ ( z ) and 𝐊 Ξ½ ⁑ ( z ) , the modified Struve functions 𝐋 Ξ½ ⁑ ( z ) and 𝐌 Ξ½ ⁑ ( z ) , the Lommel functions s ΞΌ , Ξ½ ⁑ ( z ) and S ΞΌ , Ξ½ ⁑ ( z ) , the Anger function 𝐉 Ξ½ ⁑ ( z ) , the Weber function 𝐄 Ξ½ ⁑ ( z ) , and the associated Anger–Weber function 𝐀 Ξ½ ⁑ ( z ) .
34: 11.14 Tables
β–Ί
§11.14(ii) Struve Functions
β–Ί
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ⁑ ( x ) , 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) , and I n ⁑ ( x ) 𝐋 n ⁑ ( x ) for n = 0 , 1 and x = 0 ⁒ ( .1 ) ⁒ 5 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.2 to 6D or 7D.

  • β–Ί
  • Agrest et al. (1982) tabulates 𝐇 n ⁑ ( x ) and e x ⁒ 𝐋 n ⁑ ( x ) for n = 0 , 1 and x = 0 ⁒ ( .001 ) ⁒ 5 ⁒ ( .005 ) ⁒ 15 ⁒ ( .01 ) ⁒ 100 to 11D.

  • β–Ί
    §11.14(iii) Integrals
    β–Ί
    §11.14(v) Incomplete Functions
    35: 10.32 Integral Representations
    β–Ί
    §10.32(i) Integrals along the Real Line
    β–Ί
    Basset’s Integral
    β–Ί
    §10.32(ii) Contour Integrals
    β–Ί
    §10.32(iii) Products
    β–Ί
    §10.32(iv) Compendia
    36: 10.40 Asymptotic Expansions for Large Argument
    §10.40 Asymptotic Expansions for Large Argument
    β–Ί
    §10.40(i) Hankel’s Expansions
    β–Ί
    Products
    β–Ίβ–Ί
    §10.40(iv) Exponentially-Improved Expansions
    37: 11.15 Approximations
    β–Ί
    §11.15(i) Expansions in Chebyshev Series
    β–Ί
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ⁑ ( x ) , 𝐋 n ⁑ ( x ) , 0 | x | 8 , and 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) , x 8 , for n = 0 , 1 ; 0 x t m ⁒ 𝐇 0 ⁑ ( t ) ⁒ d t , 0 x t m ⁒ 𝐋 0 ⁑ ( t ) ⁒ d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x t 1 ⁒ ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x 8 ; the coefficients are to 20D.

  • β–Ί
  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ⁑ ( x ) , 𝐋 1 ⁑ ( x ) , 0 x 16 , and I 0 ⁑ ( x ) 𝐋 0 ⁑ ( x ) , I 1 ⁑ ( x ) 𝐋 1 ⁑ ( x ) , x 16 ; the coefficients are to 20D.

  • 38: 11.2 Definitions
    §11.2 Definitions
    β–Ί
    §11.2(i) Power-Series Expansions
    β–Ίβ–ΊParticular solutions: … β–Ί
    Modified Struve’s Equation
    39: 28.26 Asymptotic Approximations for Large q
    §28.26 Asymptotic Approximations for Large q
    β–Ί
    28.26.1 Mc m ( 3 ) ⁑ ( z , h ) = e i ⁒ Ο• ( Ο€ ⁒ h ⁒ cosh ⁑ z ) 1 / 2 ⁒ ( Fc m ⁑ ( z , h ) i ⁒ Gc m ⁑ ( z , h ) ) ,
    β–Ί
    28.26.2 i ⁒ Ms m + 1 ( 3 ) ⁑ ( z , h ) = e i ⁒ Ο• ( Ο€ ⁒ h ⁒ cosh ⁑ z ) 1 / 2 ⁒ ( Fs m ⁑ ( z , h ) i ⁒ Gs m ⁑ ( z , h ) ) ,
    β–Ί
    §28.26(ii) Uniform Approximations
    β–ΊFor asymptotic approximations for M Ξ½ ( 3 , 4 ) ⁑ ( z , h ) see also Naylor (1984, 1987, 1989).
    40: 28.33 Physical Applications
    §28.33 Physical Applications
    β–Ί
    28.33.2 V n ⁑ ( ξ , η ) = ( c n ⁒ M n ( 1 ) ⁑ ( ξ , q ) + d n ⁒ M n ( 2 ) ⁑ ( ξ , q ) ) ⁒ me n ⁑ ( η , q ) ,
    β–Ί
    28.33.3 M n ( 1 ) ⁑ ( ξ 0 , q ) ⁒ M n ( 2 ) ⁑ ( ξ 1 , q ) M n ( 1 ) ⁑ ( ξ 1 , q ) ⁒ M n ( 2 ) ⁑ ( ξ 0 , q ) = 0 .
    β–Ί
  • Torres-Vega et al. (1998) for Mathieu functions in phase space.