About the Project

maximum modulus

AdvancedHelp

(0.001 seconds)

21—30 of 47 matching pages

21: 2.5 Mellin Transform Methods
Let h ( t ) = J ν 2 ( t ) and f ( t ) = 1 / ( 1 + t ) . …In the half-plane z > max ( 0 , 2 ν ) , the product f ( 1 z ) h ( z ) has a pole of order two at each positive integer, and … We now apply (2.5.5) with max ( 0 , 2 ν ) < c < 1 , and then translate the integration contour to the right. … From (2.5.26) and (2.5.28), it follows that both f ( 1 z ) and h ( z ) are defined in the half-plane z > max ( 1 b , c ) . … Put x = 1 / ζ and break the integration range at t = 1 , as in (2.5.23) and (2.5.24). …
22: 1.7 Inequalities
1.7.2 j = 1 n a j b j ( j = 1 n a j p ) 1 / p ( j = 1 n b j q ) 1 / q .
Conversely, if j = 1 n a j b j A 1 / p B 1 / q for all b j such that j = 1 n b j q B , then j = 1 n a j p A . …
1.7.3 ( j = 1 n ( a j + b j ) p ) 1 / p ( j = 1 n a j p ) 1 / p + ( j = 1 n b j p ) 1 / p .
1.7.6 ( a b ( f ( x ) + g ( x ) ) p d x ) 1 / p ( a b ( f ( x ) ) p d x ) 1 / p + ( a b ( g ( x ) ) p d x ) 1 / p .
1.7.8 min ( a 1 , a 2 , , a n ) M ( r ) max ( a 1 , a 2 , , a n ) ,
23: 2.11 Remainder Terms; Stokes Phenomenon
In both the modulus and phase of the asymptotic variable z need to be taken into account. … In the transition through θ = π , erfc ( 1 2 ρ c ( θ ) ) changes very rapidly, but smoothly, from one form to the other; compare the graph of its modulus in Figure 2.11.1 in the case ρ = 100 . … Rays (or curves) on which one contribution in a compound asymptotic expansion achieves maximum dominance over another are called Stokes lines ( θ = π in the present example). … (This means that, if necessary, z is replaced by z / ( λ 2 λ 1 ) .) … The process just used is equivalent to re-expanding the remainder term of the original asymptotic series (2.11.24) in powers of 1 / ( x + 5 ) and truncating the new series optimally. …
24: Bibliography L
  • J. Lehner (1941) A partition function connected with the modulus five. Duke Math. J. 8 (4), pp. 631–655.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • 25: 22.20 Methods of Computation
    A powerful way of computing the twelve Jacobian elliptic functions for real or complex values of both the argument z and the modulus k is to use the definitions in terms of theta functions given in §22.2, obtaining the theta functions via methods described in §20.14. … Given real or complex numbers a 0 , b 0 , with b 0 / a 0 not real and negative, define … From (22.7.1), k 1 = 1 19 and x / ( 1 + k 1 ) = 0.19 . … If either τ or q = e i π τ is given, then we use k = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , k = θ 4 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , K = 1 2 π θ 3 2 ( 0 , q ) , and K = i τ K , obtaining the values of the theta functions as in §20.14. … If k = k = 1 / 2 , then three iterations of (22.20.1) give M = 0.84721 30848 , and from (22.20.6) K = π / ( 2 M ) = 1.85407 46773 — in agreement with the value of ( Γ ( 1 4 ) ) 2 / ( 4 π ) ; compare (23.17.3) and (23.22.2). …
    26: Bibliography W
  • T. Weider (1999) Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Trans. Math. Software 25 (2), pp. 240–250.
  • J. Wimp (1985) Some explicit Padé approximants for the function Φ / Φ and a related quadrature formula involving Bessel functions. SIAM J. Math. Anal. 16 (4), pp. 887–895.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • 27: 18.14 Inequalities
    18.14.3 ( 1 2 ( 1 x ) ) 1 2 α + 1 4 ( 1 2 ( 1 + x ) ) 1 2 β + 1 4 | P n ( α , β ) ( x ) | Γ ( max ( α , β ) + n + 1 ) π 1 2 n ! ( n + 1 2 ( α + β + 1 ) ) max ( α , β ) + 1 2 , 1 x 1 , 1 2 α 1 2 , 1 2 β 1 2 .
    18.14.3_5 ( 1 2 ( 1 + x ) ) β / 2 | P n ( α , β ) ( x ) | P n ( α , β ) ( 1 ) = ( α + 1 ) n n ! , 1 x 1 , α , β 0 .
    Let R n ( x ) = P n ( α , β ) ( x ) / P n ( α , β ) ( 1 ) . …
    18.14.15 x n , m ( β α ) / ( α + β + 1 ) x n , m + 1 .
    28: 19.34 Mutual Inductance of Coaxial Circles
    19.34.1 c 2 M 2 π = a b 0 2 π ( h 2 + a 2 + b 2 2 a b cos θ ) 1 / 2 cos θ d θ = 2 a b 1 1 t d t ( 1 + t ) ( 1 t ) ( a 3 2 a b t ) = 2 a b I ( 𝐞 5 ) ,
    is the square of the maximum (upper signs) or minimum (lower signs) distance between the circles. …
    19.34.7 M = ( 2 / c 2 ) ( π a 2 ) ( π b 2 ) R 3 2 ( 3 2 , 3 2 ; r + 2 , r 2 ) .
    29: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • W. V. Snyder (1993) Algorithm 723: Fresnel integrals. ACM Trans. Math. Software 19 (4), pp. 452–456.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • I. A. Stegun and R. Zucker (1970) Automatic computing methods for special functions. I. J. Res. Nat. Bur. Standards Sect. B 74B, pp. 211–224.
  • A. J. Stone and C. P. Wood (1980) Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Comm. 21 (2), pp. 195–205.
  • 30: 31.8 Solutions via Quadratures
    31.8.3 g = 1 2 max ( 2 max 0 k 3 m k , 1 + N ( 1 + ( 1 ) N ) ( 1 2 + min 0 k 3 m k ) ) .
    Ψ 1 , 1 = ( z 2 + ( λ + 3 a + 3 ) z + a ) / z 3 ,