About the Project

locally%20integrable

AdvancedHelp

(0.001 seconds)

11—20 of 358 matching pages

11: 18.39 Applications in the Physical Sciences
These eigenfunctions are quantum wave-functions whose absolute values squared give the probability density of finding the single particle at hand at position x in the n th eigenstate, namely that probability is P ( x x + Δ x ) = | ψ n ( x ) | 2 Δ ( x ) , Δ ( x ) being a localized interval on the x -axis. … with an infinite set of orthonormal L 2 eigenfunctions … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … The bound state L 2 eigenfunctions of the radial Coulomb Schrödinger operator are discussed in §§18.39(i) and 18.39(ii), and the δ -function normalized (non- L 2 ) in Chapter 33, where the solutions appear as Whittaker functions. … The fact that non- L 2 continuum scattering eigenstates may be expressed in terms or (infinite) sums of L 2 functions allows a reformulation of scattering theory in atomic physics wherein no non- L 2 functions need appear. …
12: 35.2 Laplace Transform
35.2.1 g ( 𝐙 ) = 𝛀 etr ( 𝐙 𝐗 ) f ( 𝐗 ) d 𝐗 ,
where the integration variable 𝐗 ranges over the space 𝛀 . …
35.2.3 f 1 f 2 ( 𝐓 ) = 𝟎 < 𝐗 < 𝐓 f 1 ( 𝐓 𝐗 ) f 2 ( 𝐗 ) d 𝐗 .
13: 1.4 Calculus of One Variable
Maxima and Minima
§1.4(iv) Indefinite Integrals
Integration by Parts
§1.4(v) Definite Integrals
Square-Integrable Functions
14: 3.7 Ordinary Differential Equations
3.7.1 d 2 w d z 2 + f ( z ) d w d z + g ( z ) w = h ( z ) ,
Assume that we wish to integrate (3.7.1) along a finite path 𝒫 from z = a to z = b in a domain D . …
3.7.6 𝐀 ( τ , z ) = [ A 11 ( τ , z ) A 12 ( τ , z ) A 21 ( τ , z ) A 22 ( τ , z ) ] ,
3.7.7 𝐛 ( τ , z ) = [ b 1 ( τ , z ) b 2 ( τ , z ) ] ,
The larger the absolute values of the eigenvalues λ k that are being sought, the smaller the integration steps | τ j | need to be. …
15: 4.42 Solution of Triangles
16: 31.7 Relations to Other Functions
31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
31.7.4 H ( 1 2 + i 3 2 , α β ( 1 2 + i 3 6 ) ; α , β , 1 3 ( α + β + 1 ) , 1 3 ( α + β + 1 ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 3 ( α + β + 1 ) ; 1 ( 1 ( 3 2 i 3 2 ) z ) 3 ) .
17: 36.5 Stokes Sets
36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
36.5.13 w = u 2 3 + ( ( 2 3 u ) 2 + | y 6 z 2 | ( 2 3 u u ) 1 / 2 ) 1 / 2 ,
18: 9.13 Generalized Airy Functions
9.13.1 d 2 w d z 2 = z n w , n = 1 , 2 , 3 , ,
9.13.19 d 2 w d x 2 + x α w = 0 ,
9.13.25 A k ( z , p ) = 1 2 π i k t p exp ( z t 1 3 t 3 ) d t , k = 1 , 2 , 3 , p ,
The integration paths 0 , 1 , 2 , 3 are depicted in Figure 9.13.1. …
9.13.32 f ( p 3 ) z f ( p 1 ) + ( p 1 ) f ( p ) = 0 .
19: 12.11 Zeros
12.11.2 τ s = ( 2 s + 1 2 a ) π + i ln ( π 1 2 2 a 1 2 Γ ( 1 2 + a ) ) ,
12.11.3 λ s = ln τ s 1 2 π i .
12.11.4 u a , s 2 1 2 μ ( p 0 ( α ) + p 1 ( α ) μ 4 + p 2 ( α ) μ 8 + ) ,
12.11.7 u a , s 2 1 2 μ ( q 0 ( β ) + q 1 ( β ) μ 4 + q 2 ( β ) μ 8 + ) ,
12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
20: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
We integrate by parts twice giving: … Eigenfunctions corresponding to the continuous spectrum are non- L 2 functions. … Should q ( x ) be bounded but random, leading to Anderson localization, the spectrum could range from being a dense point spectrum to being singular continuous, see Simon (1995), Avron and Simon (1982); a good general reference being Cycon et al. (2008, Ch. 9 and 10). … … Thus, and this is a case where q ( x ) is not continuous, if q ( x ) = α δ ( x a ) , α > 0 , there will be an L 2 eigenfunction localized in the vicinity of x = a , with a negative eigenvalue, thus disjoint from the continuous spectrum on [ 0 , ) . …