About the Project

limiting%20forms%20as%20trigonometric%20functions

AdvancedHelp

(0.004 seconds)

21—30 of 972 matching pages

21: 9.1 Special Notation
(For other notation see Notation for the Special Functions.)
k nonnegative integer, except in §9.9(iii).
The main functions treated in this chapter are the Airy functions Ai ( z ) and Bi ( z ) , and the Scorer functions Gi ( z ) and Hi ( z ) (also known as inhomogeneous Airy functions). Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
22: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
23: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
24: 26.10 Integer Partitions: Other Restrictions
§26.10(ii) Generating Functions
where the last right-hand side is the sum over m 0 of the generating functions for partitions into distinct parts with largest part equal to m . …
§26.10(v) Limiting Form
§26.10(vi) Bessel-Function Expansion
where I 1 ( x ) is the modified Bessel function10.25(ii)), and …
25: 33.18 Limiting Forms for Large
§33.18 Limiting Forms for Large
26: 11.10 Anger–Weber Functions
§11.10 Anger–Weber Functions
The Anger and Weber functions satisfy the inhomogeneous Bessel differential equation …
§11.10(vi) Relations to Other Functions
For the Fresnel integrals C and S see §7.2(iii). …
27: 7.2 Definitions
§7.2(i) Error Functions
erf z , erfc z , and w ( z ) are entire functions of z , as is F ( z ) in the next subsection.
Values at Infinity
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
§7.2(iv) Auxiliary Functions
28: 1.10 Functions of a Complex Variable
If f 2 ( z ) , analytic in D 2 , equals f 1 ( z ) on an arc in D = D 1 D 2 , or on just an infinite number of points with a limit point in D , then they are equal throughout D and f 2 ( z ) is called an analytic continuation of f 1 ( z ) . … An isolated singularity z 0 is always removable when lim z z 0 f ( z ) exists, for example ( sin z ) / z at z = 0 . … If the poles are infinite in number, then the point at infinity is called an essential singularity: it is the limit point of the poles. … A cut neighborhood is formed by deleting a ray emanating from the center. …
§1.10(xi) Generating Functions
29: 26.12 Plane Partitions
Table 26.12.1: Plane partitions.
n pp ( n ) n pp ( n ) n pp ( n )
3 6 20 75278 37 903 79784
§26.12(ii) Generating Functions
§26.12(iv) Limiting Form
26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
where ζ is the Riemann ζ -function25.2(i)). …
30: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.