About the Project

limit of Laguerre polynomials

AdvancedHelp

(0.005 seconds)

11—17 of 17 matching pages

11: 18.19 Hahn Class: Definitions
§18.19 Hahn Class: Definitions
The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. …In addition to the limit relations in §18.7(iii) there are limit relations involving the further families in the Askey scheme, see §§18.21(ii) and 18.26(ii). The Askey scheme, depicted in Figure 18.21.1, gives a graphical representation of these limits. … Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ( x ; α , β , N ) , Krawtchouk polynomials K n ( x ; p , N ) , Meixner polynomials M n ( x ; β , c ) , and Charlier polynomials C n ( x ; a ) . …
12: 18.17 Integrals
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre
13: 18.10 Integral Representations
Ultraspherical
Legendre
Laguerre
for the Jacobi, Laguerre, and Hermite polynomials. …
Laguerre
14: 1.17 Integral and Series Representations of the Dirac Delta
1.17.4 lim n δ n ( x ) = δ ( x ) , x .
Legendre Polynomials (§§14.7(i) and 18.3)
Laguerre Polynomials18.3)
1.17.23 δ ( x a ) = e ( x + a ) / 2 k = 0 L k ( x ) L k ( a ) .
Hermite Polynomials18.3)
15: Bibliography D
  • A. Deaño, E. J. Huertas, and F. Marcellán (2013) Strong and ratio asymptotics for Laguerre polynomials revisited. J. Math. Anal. Appl. 403 (2), pp. 477–486.
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • C. F. Dunkl (2003) A Laguerre polynomial orthogonality and the hydrogen atom. Anal. Appl. (Singap.) 1 (2), pp. 177–188.
  • 16: Bibliography F
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1965) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III. J. Math. Anal. Appl. 12 (3), pp. 593–601.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • C. L. Frenzen and R. Wong (1988) Uniform asymptotic expansions of Laguerre polynomials. SIAM J. Math. Anal. 19 (5), pp. 1232–1248.
  • 17: 18.2 General Orthogonal Polynomials
    Kernel Polynomials
    §18.2(vi) Zeros
    The generating functions (18.12.13), (18.12.15), (18.23.3), (18.23.4), (18.23.5) and (18.23.7) for Laguerre, Hermite, Krawtchouk, Meixner, Charlier and Meixner–Pollaczek polynomials, respectively, can be written in the form (18.2.45). In fact, these are the only OP’s which are Sheffer polynomials (with Krawtchouk polynomials being only a finite system) … Equations (18.14.3_5) and (18.14.8), both for α = 0 , can be seen as special cases of this result for Jacobi and Laguerre polynomials, respectively.