About the Project

levitra sales third quarter 2004 visit drive-in.co.za

AdvancedHelp

Did you mean levitan salems third quarter 2004 visit driver-main.aspx ?

(0.003 seconds)

1—10 of 204 matching pages

1: 32.12 Asymptotic Approximations for Complex Variables
See Boutroux (1913), Kapaev and Kitaev (1993), Takei (1995), Costin (1999), Joshi and Kitaev (2001), Kapaev (2004), and Olde Daalhuis (2005b). …
§32.12(iii) Third Painlevé Equation
2: 10.4 Connection Formulas
Other solutions of (10.2.1) include J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) . …
H n ( 1 ) ( z ) = ( 1 ) n H n ( 1 ) ( z ) ,
H n ( 2 ) ( z ) = ( 1 ) n H n ( 2 ) ( z ) .
J ν ( z ) = 1 2 ( H ν ( 1 ) ( z ) + H ν ( 2 ) ( z ) ) ,
H ν ( 1 ) ( z ) = e ν π i H ν ( 1 ) ( z ) ,
3: 10.5 Wronskians and Cross-Products
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
4: 10.11 Analytic Continuation
10.11.3 sin ( ν π ) H ν ( 1 ) ( z e m π i ) = sin ( ( m 1 ) ν π ) H ν ( 1 ) ( z ) e ν π i sin ( m ν π ) H ν ( 2 ) ( z ) ,
10.11.4 sin ( ν π ) H ν ( 2 ) ( z e m π i ) = e ν π i sin ( m ν π ) H ν ( 1 ) ( z ) + sin ( ( m + 1 ) ν π ) H ν ( 2 ) ( z ) .
H ν ( 1 ) ( z ¯ ) = H ν ( 2 ) ( z ) ¯ , H ν ( 2 ) ( z ¯ ) = H ν ( 1 ) ( z ) ¯ .
5: 10.1 Special Notation
The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . … Abramowitz and Stegun (1964): j n ( z ) , y n ( z ) , h n ( 1 ) ( z ) , h n ( 2 ) ( z ) , for 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) , respectively, when n 0 . Jeffreys and Jeffreys (1956): Hs ν ( z ) for H ν ( 1 ) ( z ) , Hi ν ( z ) for H ν ( 2 ) ( z ) , Kh ν ( z ) for ( 2 / π ) K ν ( z ) . …
6: 10.2 Definitions
Bessel Functions of the Third Kind (Hankel Functions)
These solutions of (10.2.1) are denoted by H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) , and their defining properties are given by … The principal branches of H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) are two-valued and discontinuous on the cut ph z = ± π . … For fixed z ( 0 ) each branch of H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) is entire in ν . … Except where indicated otherwise, it is assumed throughout the DLMF that the symbols J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) denote the principal values of these functions. …
7: Bibliography C
  • J. B. Campbell (1980) On Temme’s algorithm for the modified Bessel function of the third kind. ACM Trans. Math. Software 6 (4), pp. 581–586.
  • B. C. Carlson (1988) A table of elliptic integrals of the third kind. Math. Comp. 51 (183), pp. 267–280, S1–S5.
  • B. C. Carlson (2004) Symmetry in c, d, n of Jacobian elliptic functions. J. Math. Anal. Appl. 299 (1), pp. 242–253.
  • P. A. Clarkson (2003a) The third Painlevé equation and associated special polynomials. J. Phys. A 36 (36), pp. 9507–9532.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • 8: 10.20 Uniform Asymptotic Expansions for Large Order
    10.20.6 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 2 e π i / 3 ( 4 ζ 1 z 2 ) 1 4 ( Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + e ± 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
    For further results see Dunster (2001a), Wang and Wong (2002), and Paris (2004). …
    9: 10.52 Limiting Forms
    𝗁 n ( 1 ) ( z ) i n 1 z 1 e i z ,
    𝗁 n ( 2 ) ( z ) i n + 1 z 1 e i z ,
    10: 10.47 Definitions and Basic Properties
    𝗃 n ( z ) and 𝗒 n ( z ) are the spherical Bessel functions of the first and second kinds, respectively; 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) are the spherical Bessel functions of the third kind. … Many properties of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , and 𝗄 n ( z ) follow straightforwardly from the above definitions and results given in preceding sections of this chapter. For example, z n 𝗃 n ( z ) , z n + 1 𝗒 n ( z ) , z n + 1 𝗁 n ( 1 ) ( z ) , z n + 1 𝗁 n ( 2 ) ( z ) , z n 𝗂 n ( 1 ) ( z ) , z n + 1 𝗂 n ( 2 ) ( z ) , and z n + 1 𝗄 n ( z ) are all entire functions of z . …
    10.47.15 𝗁 n ( 1 ) ( z ) = ( 1 ) n 𝗁 n ( 2 ) ( z ) , 𝗁 n ( 2 ) ( z ) = ( 1 ) n 𝗁 n ( 1 ) ( z ) .