About the Project

level-index arithmetic

AdvancedHelp

(0.001 seconds)

11—20 of 45 matching pages

11: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
12: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2015) IEEE Standard for Interval Arithmetic: IEEE Std 1788-2015. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2018) IEEE Standard for Interval Arithmetic: IEEE Std 1788.1-2017. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • 13: Daniel W. Lozier
    His research interests have centered on numerical analysis, special functions, computer arithmetic, and mathematical software construction and testing. …
    14: 27.15 Chinese Remainder Theorem
    Because each residue has no more than five digits, the arithmetic can be performed efficiently on these residues with respect to each of the moduli, yielding answers a 1 ( mod m 1 ) , a 2 ( mod m 2 ) , a 3 ( mod m 3 ) , and a 4 ( mod m 4 ) , where each a j has no more than five digits. …
    15: Bibliography Y
  • J. M. Yohe (1979) Software for interval arithmetic: A reasonably portable package. ACM Trans. Math. Software 5 (1), pp. 50–63.
  • 16: 1.7 Inequalities
    §1.7(iii) Means
    1.7.7 H G A ,
    17: 23.22 Methods of Computation
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • 18: 27.11 Asymptotic Formulas: Partial Sums
    where ( h , k ) = 1 , k > 0 . Letting x in (27.11.9) or in (27.11.11) we see that there are infinitely many primes p h ( mod k ) if h , k are coprime; this is Dirichlet’s theorem on primes in arithmetic progressions. … The prime number theorem for arithmetic progressions—an extension of (27.2.3) and first proved in de la Vallée Poussin (1896a, b)—states that if ( h , k ) = 1 , then the number of primes p x with p h ( mod k ) is asymptotic to x / ( ϕ ( k ) ln x ) as x .
    19: 1.2 Elementary Algebra
    Arithmetic Progression
    §1.2(iv) Means
    The arithmetic mean of n numbers a 1 , a 2 , , a n is
    1.2.17 A = a 1 + a 2 + + a n n .
    M ( 1 ) = A ,
    20: 27.2 Functions
    §27.2(i) Definitions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …