About the Project

inverse hyperbolic functions

AdvancedHelp

(0.008 seconds)

31—40 of 61 matching pages

31: 19.24 Inequalities
19.24.15 R C ( x , 1 2 ( y + z ) ) R F ( x , y , z ) R C ( x , y z ) , x 0 ,
32: 19.28 Integrals of Elliptic Integrals
33: 13.20 Uniform Asymptotic Approximations for Large μ
13.20.9 ζ ζ 2 + α 2 + α 2 arcsinh ( ζ α ) = X μ 2 κ μ ln ( X + x 2 κ 2 μ 2 κ 2 ) 2 ln ( μ X + 2 μ 2 κ x x μ 2 κ 2 ) .
13.20.13 ζ ζ 2 α 2 α 2 arccosh ( ζ α ) = X μ 2 κ μ ln ( X + x 2 κ 2 κ 2 μ 2 ) 2 ln ( κ x μ X 2 μ 2 x κ 2 μ 2 ) , x 2 κ + 2 κ 2 μ 2 ,
13.20.15 ζ ζ 2 α 2 α 2 arccosh ( ζ α ) = X μ + 2 κ μ ln ( 2 κ X x 2 κ 2 μ 2 ) + 2 ln ( μ X + 2 μ 2 κ x x κ 2 μ 2 ) , 0 < x 2 κ 2 κ 2 μ 2 ,
34: 15.12 Asymptotic Approximations
15.12.6 ζ = arccosh z .
15.12.10 ζ = arccosh ( 1 4 z 1 ) ,
35: 19.21 Connection Formulas
19.21.12 ( p x ) R J ( x , y , z , p ) + ( q x ) R J ( x , y , z , q ) = 3 R F ( x , y , z ) 3 R C ( ξ , η ) ,
36: 19.3 Graphics
See accompanying text
Figure 19.3.1: K ( k ) and E ( k ) as functions of k 2 for 2 k 2 1 . … Magnify
See accompanying text
Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . Both functions are asymptotic to ln ( 4 x ) / 4 x as x ; see (19.2.19) and (19.2.20). … Magnify
See accompanying text
Figure 19.3.3: F ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . If sin 2 ϕ = 1 ( k 2 ), then the function reduces to K ( k ) , becoming infinite when k 2 = 1 . … Magnify 3D Help
See accompanying text
Figure 19.3.4: E ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . If sin 2 ϕ = 1 ( k 2 ), then the function reduces to E ( k ) , with value 1 at k 2 = 1 . … Magnify 3D Help
In Figures 19.3.7 and 19.3.8 for complete Legendre’s elliptic integrals with complex arguments, height corresponds to the absolute value of the function and color to the phase. …
37: 19.25 Relations to Other Functions
19.25.16 Π ( ϕ , α 2 , k ) = 1 3 ω 2 R J ( c 1 , c k 2 , c , c ω 2 ) + ( c 1 ) ( c k 2 ) ( α 2 1 ) ( 1 ω 2 ) R C ( c ( α 2 1 ) ( 1 ω 2 ) , ( α 2 c ) ( c ω 2 ) ) , ω 2 = k 2 / α 2 .
38: 19.29 Reduction of General Elliptic Integrals
19.29.8 y x a α + b α t a 5 + b 5 t d t s ( t ) = 2 3 d α β d α γ d α δ d α 5 R J ( U 12 2 , U 13 2 , U 23 2 , U α 5 2 ) + 2 R C ( S α 5 2 , Q α 5 2 ) , S α 5 2 ( , 0 ) ,
39: 18.15 Asymptotic Approximations
For asymptotic expansions of P n ( cos θ ) and P n ( cosh ξ ) that are uniformly valid when 0 θ π δ and 0 ξ < see §14.15(iii) with μ = 0 and ν = n . These expansions are in terms of Bessel functions and modified Bessel functions, respectively. …
In Terms of Elementary Functions
In Terms of Bessel Functions
In Terms of Airy Functions
40: 14.3 Definitions and Hypergeometric Representations
14.3.23 P ν μ ( x ) = 1 Γ ( 1 μ ) ( x + 1 x 1 ) μ / 2 ϕ i ( 2 ν + 1 ) ( μ , μ ) ( arcsinh ( ( 1 2 x 1 2 ) 1 / 2 ) ) .