About the Project

integrals of vector-valued functions

AdvancedHelp

(0.004 seconds)

11—20 of 973 matching pages

11: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
12: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(iii) Integral Representations
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions
13: 11.9 Lommel Functions
§11.9 Lommel Functions
§11.9(ii) Expansions in Series of Bessel Functions
For collections of integral representations and integrals see Apelblat (1983, §12.17), Babister (1967, p. 85), Erdélyi et al. (1954a, §§4.19 and 5.17), Gradshteyn and Ryzhik (2000, §6.86), Marichev (1983, p. 193), Oberhettinger (1972, pp. 127–128, 168–169, and 188–189), Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger (1990, pp. 105–106 and 191–192), Oberhettinger and Badii (1973, §2.14), Prudnikov et al. (1990, §§1.6 and 2.9), Prudnikov et al. (1992a, §3.34), and Prudnikov et al. (1992b, §3.32).
14: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
§14.20(iv) Integral Representation
§14.20(x) Zeros and Integrals
For integrals with respect to τ involving 𝖯 1 2 + i τ ( x ) , see Prudnikov et al. (1990, pp. 218–228).
15: 9.1 Special Notation
(For other notation see Notation for the Special Functions.)
k nonnegative integer, except in §9.9(iii).
The main functions treated in this chapter are the Airy functions Ai ( z ) and Bi ( z ) , and the Scorer functions Gi ( z ) and Hi ( z ) (also known as inhomogeneous Airy functions). Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
16: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
17: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … For B 2 k see §24.2(i). …
18: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
The theta functions are quasi-periodic on the lattice: …
§20.2(iii) Translation of the Argument by Half-Periods
§20.2(iv) z -Zeros
19: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
20: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties