About the Project

integral identities

AdvancedHelp

(0.002 seconds)

41—50 of 61 matching pages

41: 18.36 Miscellaneous Polynomials
The possibility of generalization to α = k , for k , is implicit in the identity Szegő (1975, page 102), …
18.36.6 0 L ^ n ( k ) ( x ) L ^ m ( k ) ( x ) W ^ k ( x ) d x = ( n + k ) Γ ( n + k 1 ) ( n 1 ) ! δ n , m .
18.36.7 T k ( y ) x y ′′ + x k x + k ( ( x + k + 1 ) y y ) = ( n 1 ) y .
42: Mathematical Introduction
Other examples are: (a) the notation for the Ferrers functions—also known as associated Legendre functions on the cut—for which existing notations can easily be confused with those for other associated Legendre functions (§14.1); (b) the spherical Bessel functions for which existing notations are unsymmetric and inelegant (§§10.47(i) and 10.47(ii)); and (c) elliptic integrals for which both Legendre’s forms and the more recent symmetric forms are treated fully (Chapter 19). …
complex plane (excluding infinity).
equals by definition.
( a , b ] or [ a , b ) half-closed intervals.
𝐈 unit matrix.
mod or modulo m n ( mod p ) means p divides m n , where m , n , and p are positive integers with m > n .
43: 2.11 Remainder Terms; Stokes Phenomenon
As an example consider … From §8.19(i) the generalized exponential integral is given by …However, on combining (2.11.6) with the connection formula (8.19.18), with m = 1 , we derive … From (2.11.5) and the identityFor integrals, see Berry and Howls (1991), Howls (1992), and Paris and Kaminski (2001, Chapter 6). …
44: 16.19 Identities
§16.19 Identities
16.19.6 0 1 t a 0 ( 1 t ) a 0 b q + 1 1 G p , q m , n ( z t ; a 1 , , a p b 1 , , b q ) d t = Γ ( a 0 b q + 1 ) G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q + 1 ) ,
This reference and Mathai (1993, §§2.2 and 2.4) also supply additional identities.
45: 18.33 Polynomials Orthogonal on the Unit Circle
18.33.17 | z | = 1 Φ n ( z ) Φ m ( z ) ¯ d μ ( z ) = κ n 2 δ n , m ,
18.33.22 p ( z ) z n p ( z ¯ 1 ) ¯ = k = 0 n c n k ¯ z k .
18.33.26 ρ n 1 | α n | 2 = κ n κ n + 1 .
46: 21.1 Special Notation
g , h positive integers.
𝐈 g g × g identity matrix.
a ω line integral of the differential ω over the cycle a .
47: Bibliography G
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • J. N. Ginocchio (1991) A new identity for some six- j symbols. J. Math. Phys. 32 (6), pp. 1430–1432.
  • M. L. Glasser (1976) Definite integrals of the complete elliptic integral K . J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 313–323.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • 48: Guide to Searching the DLMF
    Table 1: Query Examples
    Query Matching records contain
    int sin the integral of the sin function
    int_$^$ sin any definite integral of sin
    int adj sin immediately followed by sin without any intervening terms.
    Table 2: Wildcard Examples
    Query What it stands for
    int_$^$ sin any definite integral of sin.
    Table 3: A sample of recognized symbols
    Symbols Comments
    -= For equivalence
    49: Bibliography
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 50: Bibliography L
  • A. M. Legendre (1825) Traité des fonctions elliptiques et des intégrales Eulériennes. Huzard-Courcier, Paris.
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.